Overview |
ECTS Credits |
Mandatory subjects | 132,00 |
........ Algebra and geometry | 33,00 |
................ UE Algebra and discrete mathematics | 1,50 |
................ VL Algebra and discrete mathematics | 4,50 |
................ UE Introduction to Geometry | 1,50 |
................ VL Introduction to Geometry | 4,50 |
................ UE Linear algebra and analytic geometry 2 | 3,00 |
................ VL Linear algebra and analytic geometry 2 | 7,50 |
................ VL Linear algebra and analytic geometry 1 | 7,50 |
................ UE Linear algebra and analytic geometry 1 | 3,00 |
........ Analysis | 39,00 |
................ UE Analysis 1 | 3,00 |
................ VL Analysis 1 | 7,50 |
................ UE Analysis 2 | 3,00 |
................ VL Analysis 2 | 7,50 |
................ UE Functional Analysis | 1,50 |
................ VL Functional Analysis | 4,50 |
................ UE Ordinary differential equations and dynamical systems | 1,50 |
................ VL Ordinary differential equations and dynamical systems | 4,50 |
................ VL Partial differential equations | 6,00 |
........ Working techniques in mathematics | 16,50 |
................ KV Algorithmic methods in numerical analysis | 3,00 |
................ KV Algorithmic methods | 3,00 |
................ KV Logic as a working language | 3,00 |
................ KV Programming 2 | 3,00 |
................ KV Programming 1 | 4,50 |
........ Computer Mathematics | 13,50 |
................ VL Algorithms and data structures | 3,00 |
................ VL Algortithmic Combinatorics | 3,00 |
................ VL Computational Logic | 3,00 |
................ UE Computer Algebra | 1,50 |
................ VL Computer Algebra | 3,00 |
........ Numerical analysis and optimization | 16,50 |
................ VL Numerical methods for partial differential equations | 6,00 |
................ UE Numerical analysis | 1,50 |
................ VL Numerical analysis | 3,00 |
................ UE Optimization | 1,50 |
................ VL Optimization | 4,50 |
........ Stochastics and Statistics | 13,50 |
................ UE Measure and Integral | 1,50 |
................ VL Measure and Integral | 3,00 |
................ UE Probability theory and statistics | 3,00 |
................ VL Probability theory and statistics | 6,00 |
Electives | 30,00 |
........ Mathematical Modelling | 6,00-9,00 |
................ VL Formal Modelling | 3,00 |
................ VL Mathematical models in the natural sciences | 3,00 |
................ VL Mathematical models in the economic sciences | 3,00 |
................ VL Mathematical models in engineering | 3,00 |
................ VL Knowledge and Data Based Modelling | 3,00 |
........ Mathematical Seminars | 3,00-6,00 |
................ PS Formal Modelling | 3,00 |
................ PS Mathematical models in the natural sciences | 3,00 |
................ PS Mathematical models in the economic sciences | 3,00 |
................ PS Mathematical models in engineering | 3,00 |
................ SE Seminar algebra and discrete mathematics | 3,00 |
................ SE Seminar Analysis | 3,00 |
................ SE Seminar Functional analysis | 3,00 |
................ SE Seminar Geometry | 3,00 |
................ SE Seminar logic and software design | 3,00 |
................ SE Seminar mathematical methods in the natural sciences | 3,00 |
................ SE Seminar mathematical methods in the economic sciences | 3,00 |
................ SE Seminar mathematical methods in engineering | 3,00 |
................ SE Seminar numerical analysis | 3,00 |
................ SE Seminar optimization | 3,00 |
................ SE Seminar symbolic computation | 3,00 |
................ SE Seminar probability theory and mathematical statistics | 3,00 |
................ SE Seminar Knowledge-based Mathematical Systems | 3,00 |
................ SE Seminar Number theory | 3,00 |
................ PS Knowledge and Data Based Modelling | 3,00 |
........ Exercises in Partial Differential Equations | 3,00-6,00 |
................ UE Numerical methods for partial differential equations | 3,00 |
................ UE Partial differential equations | 3,00 |
........ Exercises in Computational Mathematics | 1,50-4,50 |
................ UE Algorithms and data structures | 1,50 |
................ UE Algortithmic Combinatorics | 1,50 |
................ UE Computational Logic | 1,50 |
........ Gender Studies | 3,00-6,00 |
................ KV Gender Studies and Social Competence | 3,00 |
................ KV Gender Studies TNF - Introduction | 3,00 |
................ VL Special Topics Gender Studies | 3,00 |
........ a. Analysis | 0,00-13,50 |
................ VL Integral equations and boundary value problems | 6,00 |
................ VL Dynamical systems and chaos | 3,00 |
................ VL Complex variables | 6,00 |
................ VL Pseudodifferential operators and Fourier integral operators | 3,00 |
................ KO Analysis 1 | 0,00 |
................ KO Analysis 2 | 0,00 |
................ UE Dynamical systems and chaos | 1,50 |
................ UE Fractals | 1,50 |
................ VL Fractals | 3,00 |
................ UE Complex variables | 3,00 |
................ UE Integral equations and boundary value problems | 3,00 |
................ UE Classical harmonic analysis | 1,50 |
................ VL Classical harmonic analysis | 3,00 |
................ UE Pseudodifferential operators and Fourier integral operators | 1,50 |
................ UE Singular integrals and potential theory | 1,50 |
................ VL Singular integrals and potential theory | 3,00 |
................ VL Special course Analysis (1,5 ECTS) | 1,50 |
................ UE Special course analysis | 1,50 |
................ VL Special course analysis | 3,00 |
........ b. Numerical analysis | 0,00-13,50 |
................ VL Numerical methods for elliptic equations | 6,00 |
................ VL Numerical methods in continuum mechanics 1 | 3,00 |
................ UE Numerical methods for elliptic equations | 3,00 |
................ UE Numerical methods in continuum mechanics 1 | 1,50 |
................ UE Numerical methods in continuum mechanics 2 | 1,50 |
................ VL Numerical methods in continuum mechanics 2 | 3,00 |
................ VL Special topics numerical analysis (1,5 ECTS) | 1,50 |
................ UE Special topics numerical analysis | 1,50 |
................ VL Special topics numerical analysis | 3,00 |
........ c. Probability theory and mathematical statistics | 0,00-13,50 |
................ VL Stochastic processes | 3,00 |
................ VL Statistical methods | 3,00 |
................ VL Stochastic differential equations | 3,00 |
................ UE Queueing theory | 1,50 |
................ VL Queueing theory | 3,00 |
................ UE Markov chains | 1,50 |
................ VL Markov chains | 3,00 |
................ VL Special topcis probability theory and mathematical statistics (1,5 ECTS) | 1,50 |
................ UE Special topcis probability theory and mathematical statistics | 1,50 |
................ VL Special topcis probability theory and mathematical statistics | 3,00 |
................ UE Statistical methods | 1,50 |
................ UE Stochastic differential equations | 1,50 |
................ UE Stochastic processes | 1,50 |
................ UE Stochastic simulation | 1,50 |
................ VL Stochastic simulation | 3,00 |
................ UE Reliability theory | 1,50 |
................ VL Reliability theory | 3,00 |
........ d. Mathematical methods in the natural sciences | 0,00-13,50 |
................ VL Theoretical physics for mathematicians | 6,00 |
................ VL Special Topics mathematical methods in the natural sciences (1,5 ECTS) | 1,50 |
................ UE Special Topics mathematical methods in the natural sciences | 1,50 |
................ VL Special Topics mathematical methods in the natural sciences | 3,00 |
................ UE Theoretical physics for mathematicians | 1,50 |
........ e. Mathematical methods in engineering | 0,00-13,50 |
................ VL Inverse problems | 3,00 |
................ VL Mathematical methods in continuum mechanics | 6,00 |
................ UE Inverse problems | 1,50 |
................ UE Mathematical methods in electrical engineering | 1,50 |
................ VL Mathematical methods in electrical engineering | 3,00 |
................ UE Mathematical methods in continuum mechanics | 3,00 |
................ VL Special topics mathematical methods in engineering | 1,50 |
................ UE Special topics mathematical methods in engineering | 1,50 |
................ VL Special topics mathematical methods in engineering | 3,00 |
........ f. Mathematical methods in the economic sciences | 0,00-13,50 |
................ VL Financial mathematics | 4,50 |
................ UE Financial mathematics | 1,50 |
................ VL Special topics mathematical methods in the economic sciences (1,5 ECTS) | 1,50 |
................ UE Special topics mathematical methods in the economic sciences | 1,50 |
................ VL Special topics mathematical methods in the economic sciences | 3,00 |
................ VL Mathematics in the actuarial sciences | 3,00 |
........ g. Optimization | 0,00-13,50 |
................ VL Special Topics optimization (1,5 ECTS) | 1,50 |
................ UE Special Topics optimization | 1,50 |
................ VL Special Topics optimization | 3,00 |
................ UE Calculus of variation | 1,50 |
................ VL Calculus of variation | 3,00 |
........ h. Symbolic computation | 0,00-13,50 |
................ VL Algebraic combinatorics | 3,00 |
................ VL Computer Analysis | 3,00 |
................ UE Algebraic combinatorics | 1,50 |
................ UE Computer Analysis | 1,50 |
................ UE Commutative algebra and algebraic geometry | 1,50 |
................ VL Commutative algebra and algebraic geometry | 3,00 |
................ KV Programming project symbolic computation | 3,00 |
................ VL Special Functions and Symbolic Summation | 3,00 |
................ VL Special Topics symbolic computation (1,5 ECTS) | 1,50 |
................ UE Special Topics symbolic computation | 1,50 |
................ VL Special Topics symbolic computation | 3,00 |
........ i. Logic and software design | 0,00-13,50 |
................ VL Automated Reasoning | 3,00 |
................ VL Mathematical logic 1 | 3,00 |
................ KV Practical Software Technology | 4,50 |
................ KV Formal Methods in Software Development | 4,50 |
................ UE Automated Reasoning | 1,50 |
................ VL Computability theory | 3,00 |
................ VL Design and Analysis of Algorithms | 3,00 |
................ VL Introduction to parallel and distributed computing | 3,00 |
................ VL Formal Semantics of Programming Languages | 3,00 |
................ UE Mathematical logic 1 | 1,50 |
................ KV Practical in Logic and Software Design | 3,00 |
................ VL Rewriting in Computer Science and Logic | 3,00 |
................ VL Special topics logic and software design (1,5 ECTS) | 1,50 |
................ UE Special topics logic and software design | 1,50 |
................ VL Special topics logic and software design | 3,00 |
................ VL Thinking, Speaking, Writing | 3,00 |
........ j. Algebra and discrete mathematics | 0,00-13,50 |
................ VL Computer Algebra II | 3,00 |
................ UE Algebra | 1,50 |
................ VL Algebra | 6,00 |
................ UE Computer Algebra II | 1,50 |
................ UE Discrete and experimental mathematics | 1,50 |
................ VL Discrete and experimental mathematics | 3,00 |
................ VL Groebner Bases | 3,00 |
................ KO Linear algebra and analytic geometry 1 | 0,00 |
................ KO Linear algebra and analytic geometry 2 | 0,00 |
................ VL Special Topics algebra and discrete mathematics (1,5 ECTS) | 1,50 |
................ UE Special Topics algebra and discrete mathematics | 1,50 |
................ VL Special Topics algebra and discrete mathematics | 3,00 |
........ k. Functional analysis | 0,00-13,50 |
................ VL Spectral theory and distributions | 6,00 |
................ UE Distributions and locally convex spaces | 1,50 |
................ VL Distributions and locally convex spaces | 3,00 |
................ UE Ergodic theory | 1,50 |
................ VL Ergodic theory | 3,00 |
................ UE Operator theory | 1,50 |
................ VL Operator theory | 3,00 |
................ UE Sobolev spaces | 1,50 |
................ VL Sobolev spaces | 3,00 |
................ UE Spectral theory and distributions | 3,00 |
................ VL Special Topics Functional analysis (1,5 ECTS) | 1,50 |
................ UE Special Topics Functional analysis | 1,50 |
................ VL Special Topics Functional analysis | 3,00 |
........ l. Geometry | 0,00-13,50 |
................ VL Differential geometry | 3,00 |
................ UE Computational Geometry | 1,50 |
................ VL Computational Geometry | 3,00 |
................ UE Computer-aided geometric design | 1,50 |
................ VL Computer-aided geometric design | 3,00 |
................ UE Differential geometry | 1,50 |
................ UE Introduction to topology | 1,50 |
................ VL Introduction to topology | 3,00 |
................ UE Advanced differential geometry | 1,50 |
................ VL Advanced differential geometry | 3,00 |
................ UE Advanced topolopy | 1,50 |
................ VL Advanced topolopy | 3,00 |
................ VL Special Topics Geometry (1,5 ECTS) | 1,50 |
................ UE Special Topics Geometry | 1,50 |
................ VL Special Topics Geometry | 3,00 |
................ UE Splines | 1,50 |
................ VL Splines | 3,00 |
........ m. Knowledge-based Mathematical Systems | 0,00-13,50 |
................ VL Manyvalued Logic | 3,00 |
................ UE Manyvalued Logic | 1,50 |
................ UE Fuzzy Systems | 1,50 |
................ VL Fuzzy Systems | 3,00 |
................ VL Special topics Knowledge-based Mathematical Systems (1,5 ECTS) | 1,50 |
................ UE Special topics Knowledge-based Mathematical Systems | 1,50 |
................ VL Special topics Knowledge-based Mathematical Systems | 3,00 |
........ n. Number theory | 0,00-13,50 |
................ VL Applied Number Theory | 3,00 |
................ UE Applied Number Theory | 1,50 |
................ VL Finite combinatorics | 3,00 |
................ UE Cryptography | 1,50 |
................ VL Cryptography | 3,00 |
................ VL Special Topics Number theory (1,5 ECTS) | 1,50 |
................ UE Special Topics Number theory | 1,50 |
................ VL Special Topics Number theory | 3,00 |
................ UE Number-theoretic methods in numerical analysis | 1,50 |
................ VL Number-theoretic methods in numerical analysis | 3,00 |
................ UE Introduction in number theory | 1,50 |
................ VL Introduction in number theory 1 | 3,00 |
................ UE Number theory | 1,50 |
................ VL Number theory | 3,00 |
........ o. Ethic in mathematics and its applications | 0,00-3,00 |
................ KV Ethic in mathematics and its applications | 3,00 |
Bachelor Thesis | 9,00 |
........ SE Bachelor Seminar with Bachelor Thesis | 9,00 |
Free electives | 9,00 |