Übersicht |
ECTS Credits |
Pflichtfächer | 132,00 |
........ Algebra und Geometrie | 33,00 |
................ UE Algebra und Diskrete Mathematik | 1,50 |
................ VL Algebra und Diskrete Mathematik | 4,50 |
................ UE Einführung in die Geometrie | 1,50 |
................ VL Einführung in die Geometrie | 4,50 |
................ UE Lineare Algebra und Analytische Geometrie 2 | 3,00 |
................ VL Lineare Algebra und Analytische Geometrie 2 | 7,50 |
................ VL Lineare Algebra und Analytische Geometrie 1 | 7,50 |
................ UE Lineare Algebra und Analytische Geometrie 1 | 3,00 |
........ Analysis | 39,00 |
................ UE Analysis 1 | 3,00 |
................ VL Analysis 1 | 7,50 |
................ UE Analysis 2 | 3,00 |
................ VL Analysis 2 | 7,50 |
................ UE Funktionalanalysis | 1,50 |
................ VL Funktionalanalysis | 4,50 |
................ UE Gewöhnliche Differentialgleichungen und Dynamische Systeme | 1,50 |
................ VL Gewöhnliche Differentialgleichungen und Dynamische Systeme | 4,50 |
................ VL Partielle Differentialgleichungen | 6,00 |
........ Arbeitstechniken der Mathematik | 16,50 |
................ KV Algorithmische Methoden in der Numerik | 3,00 |
................ KV Algorithmische Methoden | 3,00 |
................ KV Logik als Arbeitssprache | 3,00 |
................ KV Programmierung 2 | 3,00 |
................ KV Programmierung 1 | 4,50 |
........ Computermathematik | 13,50 |
................ VL Algorithmen und Datenstrukturen | 3,00 |
................ VL Algorithmische Kombinatorik | 3,00 |
................ VL Computational Logic | 3,00 |
................ UE Computer Algebra | 1,50 |
................ VL Computer Algebra | 3,00 |
........ Numerische Mathematik und Optimierung | 16,50 |
................ VL Numerik Partieller Differentialgleichungen | 6,00 |
................ UE Numerische Analysis | 1,50 |
................ VL Numerische Analysis | 3,00 |
................ UE Optimierung | 1,50 |
................ VL Optimierung | 4,50 |
........ Stochastik und Statistik | 13,50 |
................ UE Maß- und Integrationstheorie | 1,50 |
................ VL Maß- und Integrationstheorie | 3,00 |
................ UE Wahrscheinlichkeitstheorie und Statistik | 3,00 |
................ VL Wahrscheinlichkeitstheorie und Statistik | 6,00 |
Wahlfächer | 30,00 |
........ Mathematisches Modellieren | 6,00-9,00 |
................ VL Formales Modellieren | 3,00 |
................ VL Mathematische Modelle in den Naturwissenschaften | 3,00 |
................ VL Mathematische Modelle in den Wirtschaftswissenschaften | 3,00 |
................ VL Mathematische Modelle in der Technik | 3,00 |
................ VL Wissens- und Datenbasiertes Modellieren | 3,00 |
........ Mathematische Seminare | 3,00-6,00 |
................ PS Formales Modellieren | 3,00 |
................ PS Mathematische Modelle in den Naturwissenschaften | 3,00 |
................ PS Mathematische Modelle in den Wirtschaftswissenschaften | 3,00 |
................ PS Mathematische Modelle in der Technik | 3,00 |
................ SE Algebra and Discrete Mathematics | 3,00 |
................ SE Analysis | 3,00 |
................ SE Funktionalanalysis | 3,00 |
................ SE Geometry | 3,00 |
................ SE Mathematische Methoden in den Naturwissenschaften | 3,00 |
................ SE Mathematical Methods in the Economic Sciences | 3,00 |
................ SE Mathematical Methods in Engineering | 3,00 |
................ SE Numerical Analysis | 3,00 |
................ SE Optimization | 3,00 |
................ SE Symbolic Computation | 3,00 |
................ SE Probability Theory and Mathematical Statistics | 3,00 |
................ SE Mathematical Modelling | 3,00 |
................ SE Number Theory | 3,00 |
................ PS Wissens- und Datenbasiertes Modellieren | 3,00 |
........ Übungen zu Partiellen Differentialgleichungen | 3,00-6,00 |
................ UE Numerik Partieller Differentialgleichungen | 3,00 |
................ UE Partielle Differentialgleichungen | 3,00 |
........ Übungen aus der Computermathematik | 1,50-4,50 |
................ UE Algorithmen und Datenstrukturen | 1,50 |
................ UE Algorithmische Kombinatorik | 1,50 |
................ UE Computational Logic | 1,50 |
........ Gender Studies | 3,00-6,00 |
................ KV Gender Studies und soziale Kompetenz | 3,00 |
................ KV Gender Studies TNF - Einführung | 3,00 |
................ VL Spezialvorlesung Gender Studies | 3,00 |
........ Analysis | 0,00-13,50 |
................ VL (*)Complex Analysis | 4,50 |
................ VL (*)Dynamical Systems and Chaos | 3,00 |
................ UE (*)Integral Equations and Boundary Value Problems | 1,50 |
................ VL (*)Integral equations and boundary value problems | 6,00 |
................ KO Analysis 1 | 0,00 |
................ KO Analysis 2 | 0,00 |
................ UE Dynamical Systems and Chaos | 1,50 |
................ UE Fraktale | 1,50 |
................ VL Fraktale | 3,00 |
................ UE Complex Analysis | 3,00 |
................ UE Klassische Harmonische Analysis | 1,50 |
................ VL Klassische Harmonische Analysis | 3,00 |
................ UE Pseudodifferential Operators and Fourier Integral Operators | 1,50 |
................ VL Pseudodifferential Operators and Fourier Integral Operators | 3,00 |
................ UE Singular Integrals and Potential Theory | 1,50 |
................ VL Singular Integrals and Potential Theory | 3,00 |
................ VL Spezialvorlesung Analysis (1,5 ECTS) | 1,50 |
................ UE Spezialvorlesung Analysis | 1,50 |
................ VL Spezialvorlesung Analysis | 3,00 |
........ Numerische Mathematik | 0,00-13,50 |
................ VL (*)Computational Electromagnetics | 3,00 |
................ UE (*)Numerical Methods for Elliptic Equations | 1,50 |
................ VL (*)Numerical Methods for Elliptic Equations | 6,00 |
................ VL (*)Numerical Methods in Continuum Mechanics | 3,00 |
................ UE Numerical Methods in Continuum Mechanics | 1,50 |
................ UE Numerische Methoden der Kontinuumsmechanik 2 | 1,50 |
................ VL Numerische Methoden der Kontinuumsmechanik 2 | 3,00 |
................ VL Special Topics Numerical Analysis (1.5 ECTS) | 1,50 |
................ UE Special Topics Numerical Analysis | 1,50 |
................ VL Special Topics Numerical Analysis | 3,00 |
........ Wahrscheinlichkeitstheorie und Mathematische Statistik | 0,00-13,50 |
................ VL (*)Statistical Methods | 3,00 |
................ VL (*)Stochastic Differential Equations | 4,50 |
................ VL (*)Stochastic Differential Equations 2 | 3,00 |
................ VL (*)Stochastic Processes | 3,00 |
................ UE Queueing Theory | 1,50 |
................ VL Queueing Theory | 3,00 |
................ UE Markov Chains | 1,50 |
................ VL Markov Chains | 3,00 |
................ VL Special Topics Probability Theory and Mathematical Statistics (1.5 ECTS) | 1,50 |
................ UE Special Topics Probability Theory and Mathematical Statistics | 1,50 |
................ VL Special Topics Probability Theory and Mathematical Statistics | 3,00 |
................ UE Statistical Methods | 1,50 |
................ UE Stochastic Differential Equations | 1,50 |
................ UE Stochastic Processes | 1,50 |
................ UE Stochastic Simulation | 1,50 |
................ VL Stochastic Simulation | 3,00 |
................ UE Reliability Theory | 1,50 |
................ VL Reliability Theory | 3,00 |
........ Mathematische Methoden in den Naturwissenschaften | 0,00-13,50 |
................ VL (*)Theoretical physics for mathematicians | 6,00 |
................ VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften (1,5 ECTS) | 1,50 |
................ UE Spezialvorlesung Mathematische Methoden in den Naturwissenschaften | 1,50 |
................ VL Spezialvorlesung Mathematische Methoden in den Naturwissenschaften | 3,00 |
................ UE Theoretical physics for mathematicians | 1,50 |
........ Mathematische Methoden in der Technik | 0,00-13,50 |
................ UE (*)Wavelets – Functional Analytical Basics | 1,50 |
................ VL (*)Wavelets – Functional Analytical Basics | 3,00 |
................ VL (*)Inverse problems | 3,00 |
................ UE (*)Mathematical Methods in Continuum Mechanics | 1,50 |
................ VL (*)Mathematical methods in continuum mechanics | 6,00 |
................ UE Inverse problems | 1,50 |
................ UE Mathematical Methods in Electrodynamics | 1,50 |
................ VL Mathematical Methods in Electrodynamics | 3,00 |
................ VL Special Topics Mathematical Methods in Engineering (1.5 ECTS) | 1,50 |
................ UE Special Topics Mathematical Methods in Engineering | 1,50 |
................ VL Special Topics Mathematical Methods in Engineering | 3,00 |
........ Mathematische Methoden in den Wirtschaftswissenschaften | 0,00-13,50 |
................ VL (*)Non-Life Insurance Mathematics | 3,00 |
................ VL (*)Financial Mathematics | 4,50 |
................ UE Financial Mathematics | 1,50 |
................ VL Special Topics Mathematical Methods in the Economic Sciences (1.5 ECTS) | 1,50 |
................ UE Special Topics Mathematical Methods in the Economic Sciences | 1,50 |
................ VL Special Topics Mathematical Methods in the Economic Sciences | 3,00 |
................ VL Versicherungsmathematik | 3,00 |
........ Optimierung | 0,00-13,50 |
................ VL Special Topics Optimization (1.5 ECTS) | 1,50 |
................ UE Special Topics Optimization | 1,50 |
................ VL Special Topics Optimization | 3,00 |
................ UE Calculus of Variation | 1,50 |
................ VL Calculus of Variation | 3,00 |
........ Symbolisches Rechnen | 0,00-13,50 |
................ VL (*)Algebraic Combinatorics | 3,00 |
................ VL (*)Automated Reasoning | 4,50 |
................ VL (*)Commutative algebra and algebraic geometry | 3,00 |
................ VL (*)Mathematical Logic | 3,00 |
................ KV (*)Practical Software Technology | 4,50 |
................ VL (*)Symbolic Summation and Integration | 4,50 |
................ KV (*)Formal Methods in Software Development | 4,50 |
................ UE Algebraic combinatorics | 1,50 |
................ UE Automated Reasoning | 1,50 |
................ VL Computability theory | 3,00 |
................ UE Symbolic Summation and Integration | 1,50 |
................ VL Design and Analysis of Algorithms | 3,00 |
................ VL Introduction to parallel and distributed computing | 3,00 |
................ VL Formal Semantics of Programming Languages | 3,00 |
................ UE Commutative algebra and algebraic geometry | 1,50 |
................ UE Mathematical logic | 1,50 |
................ KV Practical in Symbolic Computation | 3,00 |
................ KV Programming project symbolic computation | 3,00 |
................ VL Rewriting in Computer Science and Logic | 3,00 |
................ UE Special Functions and Symbolic Summation | 1,50 |
................ VL Special Functions and Symbolic Summation | 3,00 |
................ VL Special Topics symbolic computation (1.5 ECTS) | 1,50 |
................ UE Special Topics symbolic computation | 1,50 |
................ VL Special Topics symbolic computation | 3,00 |
................ VL Thinking, Speaking, Writing | 3,00 |
........ Algebra und Diskrete Mathematik | 0,00-13,50 |
................ VL (*)Advanced Computer Algebra | 3,00 |
................ VL (*)Algebra | 6,00 |
................ VL (*)Discrete Mathematics | 3,00 |
................ UE Algebra | 1,50 |
................ UE Advanced Computer Algebra | 1,50 |
................ UE Discrete Mathematics | 1,50 |
................ VL Groebner Bases | 3,00 |
................ KO Lineare Algebra und Analytische Geometrie 1 | 0,00 |
................ KO Lineare Algebra und Analytische Geometrie 2 | 0,00 |
................ VL Special Topics algebra and discrete mathematics (1.5 ECTS) | 1,50 |
................ UE Special Topics algebra and discrete mathematics | 1,50 |
................ VL Special Topics algebra and discrete mathematics | 3,00 |
........ Funktionalanalysis | 0,00-13,50 |
................ VL (*)Spectral theory and distributions | 4,50 |
................ UE Distributionen und lokalkonvexe Räume | 1,50 |
................ VL Distributionen und lokalkonvexe Räume | 3,00 |
................ UE Ergodentheorie | 1,50 |
................ VL Ergodentheorie | 3,00 |
................ UE Operatorentheorie | 1,50 |
................ VL Operatorentheorie | 3,00 |
................ UE Sobolev-Räume | 1,50 |
................ VL Sobolev-Räume | 3,00 |
................ UE Spectral theory and distributions | 3,00 |
................ VL Spezialvorlesung Funktionalanalysis (1,5 ECTS) | 1,50 |
................ UE Spezialvorlesung Funktionalanalysis | 1,50 |
................ VL Spezialvorlesung Funktionalanalysis | 3,00 |
........ Geometrie | 0,00-13,50 |
................ VL (*)Computational Geometry | 3,00 |
................ VL (*)Computer-aided geometric design | 3,00 |
................ VL (*)Differential Geometry | 3,00 |
................ UE Computational Geometry | 1,50 |
................ UE Computer-aided geometric design | 1,50 |
................ UE Differential Geometry | 1,50 |
................ UE Einführung in die Topologie | 1,50 |
................ VL Einführung in die Topologie | 3,00 |
................ UE Höhere Differentialgeometrie | 1,50 |
................ VL Höhere Differentialgeometrie | 3,00 |
................ UE Höhere Topologie | 1,50 |
................ VL Höhere Topologie | 3,00 |
................ VL Special Topics Geometry (1.5 ECTS) | 1,50 |
................ UE Special Topics Geometry | 1,50 |
................ VL Special Topics Geometry | 3,00 |
................ UE Splines | 1,50 |
................ VL Splines | 3,00 |
........ Wissensbasierte mathematische Systeme | 0,00-13,50 |
................ KV (*)Practical Knowledge-Based Systems | 3,00 |
................ UE Manyvalued Logic | 1,50 |
................ UE Fuzzy Systems | 1,50 |
................ VL Fuzzy Systems | 3,00 |
................ VL Manyvalued Logic | 3,00 |
................ VL Spezialvorlesung Wissensbasierte mathematische Systeme (1,5 ECTS) | 1,50 |
................ UE Spezialvorlesung Wissensbasierte mathematische Systeme | 1,50 |
................ VL Spezialvorlesung Wissensbasierte mathematische Systeme | 3,00 |
........ Zahlentheorie | 0,00-13,50 |
................ VL (*)Number Theory | 4,50 |
................ UE Applied Number Theory | 1,50 |
................ VL Applied Number Theory | 3,00 |
................ VL Einführung in die Kombinatorik | 3,00 |
................ UE Cryptography | 1,50 |
................ VL Cryptography | 3,00 |
................ VL Special Topics Number theory (1,5 ECTS) | 1,50 |
................ UE Special Topics Number theory | 1,50 |
................ VL Special Topics Number theory | 3,00 |
................ UE Number-theoretic Methods in Numerical Analysis | 1,50 |
................ VL Number-theoretic Methods in Numerical Analysis | 3,00 |
................ UE Einführung in die Zahlentheorie | 1,50 |
................ VL Einführung in die Zahlentheorie | 3,00 |
................ UE Number Theory | 1,50 |
........ Ethik in der Mathematik und ihren Anwendungen | 0,00-3,00 |
................ KV Ethik in der Mathematik und ihren Anwendungen | 3,00 |
Bachelorarbeit | 9,00 |
........ SE Bachelorseminar mit Bachelorarbeit | 9,00 |
Freie Studienleistungen | 9,00 |