Inhalt

Master's programme Industrial Mathematics (UK 066/403)

Versionsauswahl
Overview ECTS Credits
Mandatory subjects31,50
........ Mathematical modeling22,50
................ VL Financial mathematics4,50
................ VL Integral equations and boundary value problems6,00
................ VL Inverse problems3,00
................ VL Mathematical methods in continuum mechanics6,00
................ VL Stochastic processes3,00
........ Numerical simulation9,00
................ VL Numerical methods for elliptic equations6,00
................ VL Numerical methods in continuum mechanics 13,00
Electives36,00
........ a. Analysis0,00-21,00
................ VL Integral equations and boundary value problems6,00
................ VL Pseudodifferential operators and Fourier integral operators3,00
................ UE Integral equations and boundary value problems3,00
................ UE Pseudodifferential operators and Fourier integral operators1,50
................ SE Seminar Analysis3,00
................ UE Singular integrals and potential theory1,50
................ VL Singular integrals and potential theory3,00
........ b. Numerical analysis0,00-18,00
................ UE Numerical methods for elliptic equations3,00
................ UE Numerical methods in continuum mechanics 11,50
................ UE Numerical methods in continuum mechanics 21,50
................ VL Numerical methods in continuum mechanics 23,00
................ SE Seminar numerical analysis3,00
................ VL Special topics numerical analysis (1,5 ECTS)1,50
................ UE Special topics numerical analysis1,50
................ VL Special topics numerical analysis3,00
........ c. Probability theory and mathematical statistics0,00-34,50
................ VL Statistical methods3,00
................ VL Stochastic differential equations3,00
................ UE Queueing theory1,50
................ VL Queueing theory3,00
................ UE Markov chains1,50
................ VL Markov chains3,00
................ SE Seminar probability theory and mathematical statistics3,00
................ VL Special topcis probability theory and mathematical statistics (1,5 ECTS)1,50
................ UE Special topcis probability theory and mathematical statistics1,50
................ VL Special topcis probability theory and mathematical statistics3,00
................ UE Statistical methods1,50
................ UE Stochastic differential equations1,50
................ UE Stochastic processes1,50
................ UE Stochastic simulation1,50
................ VL Stochastic simulation3,00
................ UE Reliability theory1,50
................ VL Reliability theory3,00
........ d. Mathematical methods in the natural sciences0,00-3,00
................ SE Seminar mathematical methods in the natural sciences3,00
........ e. Mathematical methods in engineering0,00-18,00
................ UE Inverse problems1,50
................ UE Mathematical methods in electrical engineering1,50
................ VL Mathematical methods in electrical engineering3,00
................ UE Mathematical methods in continuum mechanics3,00
................ SE Seminar mathematical methods in engineering3,00
................ VL Special topics mathematical methods in engineering1,50
................ UE Special topics mathematical methods in engineering1,50
................ VL Special topics mathematical methods in engineering3,00
........ f. Mathematical methods in the economic sciences0,00-10,50
................ UE Financial mathematics1,50
................ SE Seminar mathematical methods in the economic sciences3,00
................ VL Special topics mathematical methods in the economic sciences (1,5 ECTS)1,50
................ UE Special topics mathematical methods in the economic sciences1,50
................ VL Special topics mathematical methods in the economic sciences3,00
........ g. Optimization0,00-13,50
................ SE Seminar optimization3,00
................ VL Special Topics optimization (1,5 ECTS)1,50
................ UE Special Topics optimization1,50
................ VL Special Topics optimization3,00
................ UE Calculus of variation1,50
................ VL Calculus of variation3,00
........ h. Symbolic computation0,00-3,00
................ SE Seminar symbolic computation3,00
........ i. Logic and software design0,00-3,00
................ SE Seminar logic and software design3,00
........ j. Algebra and discrete mathematics0,00-3,00
................ SE Seminar algebra and discrete mathematics3,00
........ k. Functional analysis0,00-3,00
................ SE Seminar Functional analysis3,00
........ l. Geometry0,00-21,00
................ VL Differential geometry3,00
................ UE Computational Geometry1,50
................ VL Computational Geometry3,00
................ UE Computer-aided geometric design1,50
................ VL Computer-aided geometric design3,00
................ UE Differential geometry1,50
................ SE Seminar Geometry3,00
................ UE Splines1,50
................ VL Splines3,00
........ m. Knowledge-based Mathematical Systems0,00-12,00
................ VL Manyvalued Logic3,00
................ UE Manyvalued Logic1,50
................ UE Fuzzy Systems1,50
................ VL Fuzzy Systems3,00
................ SE Seminar Knowledge-based Mathematical Systems3,00
........ n. Number theory0,00-7,50
................ SE Seminar Number theory3,00
................ UE Number-theoretic methods in numerical analysis1,50
................ VL Number-theoretic methods in numerical analysis3,00
........ o. Soft Skills0,00-6,00
................ UE Planning, writing and presenting an academic paper3,00
................ VL Ethics and Gender Studies3,00
................ KV Gender Studies Managing Equality TN3,00
Master's Thesis Seminars16,00
........ SE Master's Thesis Seminar I8,00
........ SE Master's Thesis Seminar II8,00
Free electives12,00