| Overview |
ECTS Credits |
| Mandatory subjects | 132,00 |
| ........ Algebra and geometry | 33,00 |
| ................ UE Algebra and discrete mathematics | 1,50 |
| ................ VL Algebra and discrete mathematics | 4,50 |
| ................ UE Introduction to Geometry | 1,50 |
| ................ VL Introduction to Geometry | 4,50 |
| ................ UE Linear algebra and analytic geometry 2 | 3,00 |
| ................ VL Linear algebra and analytic geometry 2 | 7,50 |
| ................ VL Linear algebra and analytic geometry 1 | 7,50 |
| ................ UE Linear algebra and analytic geometry 1 | 3,00 |
| ........ Analysis | 39,00 |
| ................ UE Analysis 1 | 3,00 |
| ................ VL Analysis 1 | 7,50 |
| ................ UE Analysis 2 | 3,00 |
| ................ VL Analysis 2 | 7,50 |
| ................ UE Functional Analysis | 1,50 |
| ................ VL Functional Analysis | 4,50 |
| ................ UE Ordinary differential equations and dynamical systems | 1,50 |
| ................ VL Ordinary differential equations and dynamical systems | 4,50 |
| ................ VL Partial differential equations | 6,00 |
| ........ Working techniques in mathematics | 16,50 |
| ................ KV Algorithmic methods in numerical analysis | 3,00 |
| ................ KV Algorithmic methods | 3,00 |
| ................ KV Logic as a working language | 3,00 |
| ................ KV Programming 2 | 3,00 |
| ................ KV Programming 1 | 4,50 |
| ........ Computer Mathematics | 13,50 |
| ................ VL Algorithms and data structures | 3,00 |
| ................ VL Algortithmic Combinatorics | 3,00 |
| ................ VL Computational Logic | 3,00 |
| ................ UE Computer Algebra | 1,50 |
| ................ VL Computer Algebra | 3,00 |
| ........ Numerical analysis and optimization | 16,50 |
| ................ VL Numerical methods for partial differential equations | 6,00 |
| ................ UE Numerical analysis | 1,50 |
| ................ VL Numerical analysis | 3,00 |
| ................ UE Optimization | 1,50 |
| ................ VL Optimization | 4,50 |
| ........ Stochastics and Statistics | 13,50 |
| ................ UE Measure and Integral | 1,50 |
| ................ VL Measure and Integral | 3,00 |
| ................ UE Probability theory and statistics | 3,00 |
| ................ VL Probability theory and statistics | 6,00 |
| Electives | 30,00 |
| ........ Mathematical Modelling | 6,00-9,00 |
| ................ VL Formal Modelling | 3,00 |
| ................ VL Mathematical models in the natural sciences | 3,00 |
| ................ VL Mathematical models in the economic sciences | 3,00 |
| ................ VL Mathematical models in engineering | 3,00 |
| ................ VL Knowledge and Data Based Modelling | 3,00 |
| ........ Mathematical Seminars | 3,00-6,00 |
| ................ PS Formal Modelling | 3,00 |
| ................ PS Mathematical models in the natural sciences | 3,00 |
| ................ PS Mathematical models in the economic sciences | 3,00 |
| ................ PS Mathematical models in engineering | 3,00 |
| ................ SE Seminar algebra and discrete mathematics | 3,00 |
| ................ SE Seminar Analysis | 3,00 |
| ................ SE Seminar Functional analysis | 3,00 |
| ................ SE Seminar Geometry | 3,00 |
| ................ SE Seminar logic and software design | 3,00 |
| ................ SE Seminar mathematical methods in the natural sciences | 3,00 |
| ................ SE Seminar mathematical methods in the economic sciences | 3,00 |
| ................ SE Seminar mathematical methods in engineering | 3,00 |
| ................ SE Seminar numerical analysis | 3,00 |
| ................ SE Seminar optimization | 3,00 |
| ................ SE Seminar symbolic computation | 3,00 |
| ................ SE Seminar probability theory and mathematical statistics | 3,00 |
| ................ SE Seminar Knowledge-based Mathematical Systems | 3,00 |
| ................ SE Seminar Number theory | 3,00 |
| ................ PS Knowledge and Data Based Modelling | 3,00 |
| ........ Exercises in Partial Differential Equations | 3,00-6,00 |
| ................ UE Numerical methods for partial differential equations | 3,00 |
| ................ UE Partial differential equations | 3,00 |
| ........ Exercises in Computational Mathematics | 1,50-4,50 |
| ................ UE Algorithms and data structures | 1,50 |
| ................ UE Algortithmic Combinatorics | 1,50 |
| ................ UE Computational Logic | 1,50 |
| ........ Gender Studies | 3,00-6,00 |
| ................ KV Gender Studies and Social Competence | 3,00 |
| ................ KV Gender Studies TNF - Introduction | 3,00 |
| ................ VL Special Topics Gender Studies | 3,00 |
| ........ a. Analysis | 0,00-13,50 |
| ................ VL Integral equations and boundary value problems | 6,00 |
| ................ VL Dynamical systems and chaos | 3,00 |
| ................ VL Complex variables | 6,00 |
| ................ VL Pseudodifferential operators and Fourier integral operators | 3,00 |
| ................ KO Analysis 1 | 0,00 |
| ................ KO Analysis 2 | 0,00 |
| ................ UE Dynamical systems and chaos | 1,50 |
| ................ UE Fractals | 1,50 |
| ................ VL Fractals | 3,00 |
| ................ UE Complex variables | 3,00 |
| ................ UE Integral equations and boundary value problems | 3,00 |
| ................ UE Classical harmonic analysis | 1,50 |
| ................ VL Classical harmonic analysis | 3,00 |
| ................ UE Pseudodifferential operators and Fourier integral operators | 1,50 |
| ................ UE Singular integrals and potential theory | 1,50 |
| ................ VL Singular integrals and potential theory | 3,00 |
| ................ VL Special course Analysis (1,5 ECTS) | 1,50 |
| ................ UE Special course analysis | 1,50 |
| ................ VL Special course analysis | 3,00 |
| ........ b. Numerical analysis | 0,00-13,50 |
| ................ VL Numerical methods for elliptic equations | 6,00 |
| ................ VL Numerical methods in continuum mechanics 1 | 3,00 |
| ................ UE Numerical methods for elliptic equations | 3,00 |
| ................ UE Numerical methods in continuum mechanics 1 | 1,50 |
| ................ UE Numerical methods in continuum mechanics 2 | 1,50 |
| ................ VL Numerical methods in continuum mechanics 2 | 3,00 |
| ................ VL Special topics numerical analysis (1,5 ECTS) | 1,50 |
| ................ UE Special topics numerical analysis | 1,50 |
| ................ VL Special topics numerical analysis | 3,00 |
| ........ c. Probability theory and mathematical statistics | 0,00-13,50 |
| ................ UE Stochastic simulation | 1,50 |
| ................ VL Stochastic simulation | 3,00 |
| ................ VL Stochastic processes | 3,00 |
| ................ VL Statistical methods | 3,00 |
| ................ VL Stochastic differential equations | 3,00 |
| ................ UE Queueing theory | 1,50 |
| ................ VL Queueing theory | 3,00 |
| ................ UE Markov chains | 1,50 |
| ................ VL Markov chains | 3,00 |
| ................ VL Special topcis probability theory and mathematical statistics (1,5 ECTS) | 1,50 |
| ................ UE Special topcis probability theory and mathematical statistics | 1,50 |
| ................ VL Special topcis probability theory and mathematical statistics | 3,00 |
| ................ UE Statistical methods | 1,50 |
| ................ UE Stochastic differential equations | 1,50 |
| ................ UE Stochastic processes | 1,50 |
| ................ UE Reliability theory | 1,50 |
| ................ VL Reliability theory | 3,00 |
| ........ d. Mathematical methods in the natural sciences | 0,00-13,50 |
| ................ VL Theoretical physics for mathematicians | 6,00 |
| ................ VL Special Topics mathematical methods in the natural sciences (1,5 ECTS) | 1,50 |
| ................ UE Special Topics mathematical methods in the natural sciences | 1,50 |
| ................ VL Special Topics mathematical methods in the natural sciences | 3,00 |
| ................ UE Theoretical physics for mathematicians | 1,50 |
| ........ e. Mathematical methods in engineering | 0,00-13,50 |
| ................ VL Inverse problems | 3,00 |
| ................ VL Mathematical methods in continuum mechanics | 6,00 |
| ................ UE Inverse problems | 1,50 |
| ................ UE Mathematical methods in electrical engineering | 1,50 |
| ................ VL Mathematical methods in electrical engineering | 3,00 |
| ................ UE Mathematical methods in continuum mechanics | 3,00 |
| ................ VL Special topics mathematical methods in engineering | 1,50 |
| ................ UE Special topics mathematical methods in engineering | 1,50 |
| ................ VL Special topics mathematical methods in engineering | 3,00 |
| ........ f. Mathematical methods in the economic sciences | 0,00-13,50 |
| ................ VL Financial mathematics | 4,50 |
| ................ UE Financial mathematics | 1,50 |
| ................ VL Special topics mathematical methods in the economic sciences (1,5 ECTS) | 1,50 |
| ................ UE Special topics mathematical methods in the economic sciences | 1,50 |
| ................ VL Special topics mathematical methods in the economic sciences | 3,00 |
| ................ VL Mathematics in the actuarial sciences | 3,00 |
| ........ g. Optimization | 0,00-13,50 |
| ................ VL Special Topics optimization (1,5 ECTS) | 1,50 |
| ................ UE Special Topics optimization | 1,50 |
| ................ VL Special Topics optimization | 3,00 |
| ................ UE Calculus of variation | 1,50 |
| ................ VL Calculus of variation | 3,00 |
| ........ h. Symbolic computation | 0,00-13,50 |
| ................ VL Algebraic combinatorics | 3,00 |
| ................ VL Commutative algebra and algebraic geometry | 6,00 |
| ................ UE Algebraic combinatorics | 1,50 |
| ................ VL Computer analysis | 3,00 |
| ................ UE Computer Algebra for Concrete Mathematics | 1,50 |
| ................ VL Computer Algebra for Concrete Mathematics | 3,00 |
| ................ VL Elimination theory | 3,00 |
| ................ UE Commutative algebra and algebraic geometry | 1,50 |
| ................ KV Programming in Mathematica | 3,00 |
| ................ KV Programming project symbolic computation | 3,00 |
| ................ VL Special Topics symbolic computation (1,5 ECTS) | 1,50 |
| ................ UE Special Topics symbolic computation | 1,50 |
| ................ VL Special Topics symbolic computation | 3,00 |
| ........ i. Logic and software design | 0,00-13,50 |
| ................ KV Formal methods in software development | 6,00 |
| ................ VL Mathematical logic 1 | 6,00 |
| ................ KV Practical software technology | 6,00 |
| ................ UE Automated Reasoning | 1,50 |
| ................ VL Automated Reasoning | 3,00 |
| ................ VL Computability theory | 3,00 |
| ................ VL Design and Analysis of Algorithms | 3,00 |
| ................ VL Introduction to parallel and distributed computing | 3,00 |
| ................ VL Decidable logical theories | 3,00 |
| ................ VL Decidibility and complexity classes | 3,00 |
| ................ VL Formal Semantics of Programming Languages | 3,00 |
| ................ KV Functional programming | 3,00 |
| ................ KV Logic programming | 3,00 |
| ................ UE Mathematical logic 1 | 1,50 |
| ................ VL Mathematical logic 2 | 3,00 |
| ................ VL Rewriting in Computer Science and Logic | 3,00 |
| ................ VL Special topics logic and software design (1,5 ECTS) | 1,50 |
| ................ UE Special topics logic and software design | 1,50 |
| ................ VL Special topics logic and software design | 3,00 |
| ................ VL Thinking, Speaking, Writing | 3,00 |
| ........ j. Algebra and discrete mathematics | 0,00-13,50 |
| ................ UE Algebra | 1,50 |
| ................ VL Algebra | 6,00 |
| ................ UE Discrete mathematics | 1,50 |
| ................ VL Discrete mathematics | 3,00 |
| ................ UE Information and coding theory | 1,50 |
| ................ VL Information and coding theory | 3,00 |
| ................ UE Cryptography | 1,50 |
| ................ VL Cryptography | 3,00 |
| ................ KO Linear algebra and analytic geometry 1 | 0,00 |
| ................ KO Linear algebra and analytic geometry 2 | 0,00 |
| ................ VL Special Topics algebra and discrete mathematics (1,5 ECTS) | 1,50 |
| ................ UE Special Topics algebra and discrete mathematics | 1,50 |
| ................ VL Special Topics algebra and discrete mathematics | 3,00 |
| ........ k. Functional analysis | 0,00-13,50 |
| ................ VL Spectral theory and distributions | 6,00 |
| ................ UE Distributions and locally convex spaces | 1,50 |
| ................ VL Distributions and locally convex spaces | 3,00 |
| ................ UE Ergodic theory | 1,50 |
| ................ VL Ergodic theory | 3,00 |
| ................ UE Operator theory | 1,50 |
| ................ VL Operator theory | 3,00 |
| ................ UE Sobolev spaces | 1,50 |
| ................ VL Sobolev spaces | 3,00 |
| ................ UE Spectral theory and distributions | 3,00 |
| ................ VL Special Topics Functional analysis (1,5 ECTS) | 1,50 |
| ................ UE Special Topics Functional analysis | 1,50 |
| ................ VL Special Topics Functional analysis | 3,00 |
| ........ l. Geometry | 0,00-13,50 |
| ................ VL Differential geometry | 3,00 |
| ................ UE Computational Geometry | 1,50 |
| ................ VL Computational Geometry | 3,00 |
| ................ UE Computer-aided geometric design | 1,50 |
| ................ VL Computer-aided geometric design | 3,00 |
| ................ UE Differential geometry | 1,50 |
| ................ UE Introduction to topology | 1,50 |
| ................ VL Introduction to topology | 3,00 |
| ................ UE Advanced differential geometry | 1,50 |
| ................ VL Advanced differential geometry | 3,00 |
| ................ UE Advanced topolopy | 1,50 |
| ................ VL Advanced topolopy | 3,00 |
| ................ VL Special Topics Geometry (1,5 ECTS) | 1,50 |
| ................ UE Special Topics Geometry | 1,50 |
| ................ VL Special Topics Geometry | 3,00 |
| ................ UE Splines | 1,50 |
| ................ VL Splines | 3,00 |
| ........ m. Knowledge-based Mathematical Systems | 0,00-13,50 |
| ................ UE Fuzzy logic | 1,50 |
| ................ VL Fuzzy logic | 3,00 |
| ................ UE Fuzzy Systems | 1,50 |
| ................ VL Fuzzy Systems | 3,00 |
| ................ VL Special topics Knowledge-based Mathematical Systems (1,5 ECTS) | 1,50 |
| ................ UE Special topics Knowledge-based Mathematical Systems | 1,50 |
| ................ VL Special topics Knowledge-based Mathematical Systems | 3,00 |
| ........ n. Number theory | 0,00-13,50 |
| ................ VL Finite combinatorics | 3,00 |
| ................ VL Special Topics Number theory (1,5 ECTS) | 1,50 |
| ................ UE Special Topics Number theory | 1,50 |
| ................ VL Special Topics Number theory | 3,00 |
| ................ UE Number-theoretic methods in numerical analysis | 1,50 |
| ................ VL Number-theoretic methods in numerical analysis | 3,00 |
| ................ UE Number theory 1 | 1,50 |
| ................ VL Number theory 1 | 3,00 |
| ................ UE Number theory 2 | 1,50 |
| ................ VL Number theory 2 | 3,00 |
| ........ o. Ethic in mathematics and its applications | 0,00-3,00 |
| ................ KV Ethic in mathematics and its applications | 3,00 |
| Bachelor Thesis | 9,00 |
| ........ SE Bachelor Seminar with Bachelor Thesis | 9,00 |
| Free electives | 9,00 |