Inhalt

[ TM1WHKVPPSR ] KV Programming project symbolic computation

Versionsauswahl
Es ist eine neuere Version 2020W dieser LV im Curriculum Master's programme Computer Mathematics 2021W vorhanden.
Workload Education level Study areas Responsible person Hours per week Coordinating university
3 ECTS B3 - Bachelor's programme 3. year Mathematics Ralf Hemmecke 2 hpw Johannes Kepler University Linz
Detailed information
Original study plan Bachelor's programme Technical Mathematics 2009W
Objectives
  • Understanding inherent problems in symbolic computation (expression swell during computation, etc.)
  • Learning about underlying data structure for polynomials, symbolic expressions, etc.
  • Acquire practical experiences in collaborative project work
Subject Concrete projects will be fixed in the beginning of the course.

  • Programming in a computer algebra system (FriCAS, Mathematica, Maple)
  • Topics are be project specific, e.g.,
    • Implementation of efficient data structures for symbolic computation
    • Implementation of selected algorithms with polynoms
Criteria for evaluation Course evaluation via:

  • project deliverables (source code, testsuite, user and maintainer documentation)
  • presentation(s)
Methods guided project work in small groups
Language German/English
Study material Here just a selection of relevant literature.

  • J. H. Davenport, Y. Siret, E Tournier: Computer algebra. Systems and algorithms for algebraic computation. Second edition. Academic Press, Ltd., London, 1993.
  • Joachim von zur Gathen, Juergen Gerhard: Modern Computer Algebra, Second Edition. Cambridge University Press, Cambridge, 2003.
  • Keith O. Geddes, Stephen R. Czapor, George Labahn: Algorithms for Computer Algebra. Kluwer Academic Publishers, Boston, MA, 1992.
  • Ronald L. Graham, Donald E.Knuth, Oren Patashnik: Concrete mathematics. A foundation for computer science. Second edition. Addison-Wesley Publishing Company, Reading, MA, 1994.
  • Donald E. Knuth: The Art of Computer Programming II: Seminumerical Algorithms. Addison-Wesley, 1969.
  • Marko Petkovsek, Herbert S. Wilf, Doron Zeilberger: A=B. With a foreword by Donald E. Knuth. A K Peters, Ltd., Wellesley, MA, 1996.
  • Franz Winkler: Polynomial algorithms in computer algebra. Texts and Monographs in Symbolic Computation. Springer-Verlag, Vienna, 1996.
Changing subject? Yes
On-site course
Maximum number of participants -
Assignment procedure Direct assignment