Inhalt

Bachelor's programme Technical Mathematics (UK 033/201)

Versionsauswahl
Overview ECTS Credits
Mandatory subjects132,00
........ Algebra and geometry33,00
................ UE Algebra and discrete mathematics1,50
................ VL Algebra and discrete mathematics4,50
................ UE Introduction to Geometry1,50
................ VL Introduction to Geometry4,50
................ UE Linear algebra and analytic geometry 23,00
................ VL Linear algebra and analytic geometry 27,50
................ VL Linear algebra and analytic geometry 17,50
................ UE Linear algebra and analytic geometry 13,00
........ Analysis39,00
................ UE Analysis 13,00
................ VL Analysis 17,50
................ UE Analysis 23,00
................ VL Analysis 27,50
................ UE Functional Analysis1,50
................ VL Functional Analysis4,50
................ UE Ordinary differential equations and dynamical systems1,50
................ VL Ordinary differential equations and dynamical systems4,50
................ VL Partial differential equations6,00
........ Working techniques in mathematics16,50
................ KV Algorithmic methods in numerical analysis3,00
................ KV Algorithmic methods3,00
................ KV Logic as a working language3,00
................ KV Programming 23,00
................ KV Programming 14,50
........ Computer Mathematics13,50
................ VL Algorithms and data structures3,00
................ VL Algorithmic Combinatorics3,00
................ VL Computational Logic3,00
................ UE Computer Algebra1,50
................ VL Computer Algebra3,00
........ Numerical analysis and optimization16,50
................ VL Numerical methods for partial differential equations6,00
................ UE Numerical analysis1,50
................ VL Numerical analysis3,00
................ UE Optimization1,50
................ VL Optimization4,50
........ Stochastics and Statistics13,50
................ UE Measure and Integral1,50
................ VL Measure and Integral3,00
................ UE Probability theory and statistics3,00
................ VL Probability theory and statistics6,00
Electives30,00
........ Mathematical Modelling6,00-9,00
................ VL Formal Modelling3,00
................ VL Mathematical models in the natural sciences3,00
................ VL Mathematical models in the economic sciences3,00
................ VL Mathematical models in engineering3,00
................ VL Knowledge and Data Based Modelling3,00
........ Mathematical Seminars3,00-6,00
................ PS Formal Modelling3,00
................ PS Mathematical models in the natural sciences3,00
................ PS Mathematical models in the economic sciences3,00
................ PS Mathematical models in engineering3,00
................ SE Seminar algebra and discrete mathematics3,00
................ SE Seminar Analysis3,00
................ SE Seminar Functional analysis3,00
................ SE Geometry3,00
................ SE Seminar logic and software design3,00
................ SE Seminar mathematical methods in the natural sciences3,00
................ SE Mathematical Methods in the Economic Sciences3,00
................ SE Mathematical Methods in Engineering3,00
................ SE Numerical Analysis3,00
................ SE Optimization3,00
................ SE Seminar symbolic computation3,00
................ SE Probability Theory and Mathematical Statistics3,00
................ SE Seminar Knowledge-based Mathematical Systems3,00
................ SE Seminar Number theory3,00
................ PS Knowledge and Data Based Modelling3,00
........ Exercises in Partial Differential Equations3,00-6,00
................ UE Numerical methods for partial differential equations3,00
................ UE Partial differential equations3,00
........ Exercises in Computational Mathematics1,50-4,50
................ UE Algorithms and data structures1,50
................ UE Algortithmic Combinatorics1,50
................ UE Computational Logic1,50
........ Gender Studies3,00-6,00
................ KV Gender Studies and Social Competence3,00
................ KV Gender Studies TNF - Introduction3,00
................ VL Special Topics Gender Studies3,00
........ a. Analysis0,00-13,50
................ UE Integral Equations and Boundary Value Problems1,50
................ VL Integral equations and boundary value problems6,00
................ VL Dynamical Systems and Chaos3,00
................ VL Complex variables6,00
................ VL Pseudodifferential Operators and Fourier Integral Operators3,00
................ KO Analysis 10,00
................ KO Analysis 20,00
................ UE Dynamical Systems and Chaos1,50
................ UE Fractals1,50
................ VL Fractals3,00
................ UE Complex variables3,00
................ UE Classical harmonic analysis1,50
................ VL Classical harmonic analysis3,00
................ UE Pseudodifferential Operators and Fourier Integral Operators1,50
................ UE Singular Integrals and Potential Theory1,50
................ VL Singular Integrals and Potential Theory3,00
................ VL Special course Analysis (1,5 ECTS)1,50
................ UE Special course analysis1,50
................ VL Special course analysis3,00
........ b. Numerical analysis0,00-13,50
................ UE Numerical Methods for Elliptic Equations1,50
................ VL Numerical Methods for Elliptic Equations6,00
................ VL Numerical Methods in Continuum Mechanics3,00
................ UE Numerical Methods in Continuum Mechanics1,50
................ UE Numerical methods in continuum mechanics 21,50
................ VL Numerical methods in continuum mechanics 23,00
................ VL Special Topics Numerical Analysis (1.5 ECTS)1,50
................ UE Special Topics Numerical Analysis1,50
................ VL Special Topics Numerical Analysis3,00
........ c. Probability theory and mathematical statistics0,00-13,50
................ VL Stochastic Processes3,00
................ VL Statistical Methods3,00
................ VL Stochastic Differential Equations3,00
................ UE Queueing theory1,50
................ VL Queueing theory3,00
................ UE Markov Chains1,50
................ VL Markov Chains3,00
................ VL Special Topics Probability Theory and Mathematical Statistics (1.5 ECTS)1,50
................ UE Special Topics Probability Theory and Mathematical Statistics1,50
................ VL Special Topics Probability Theory and Mathematical Statistics3,00
................ UE Statistical Methods1,50
................ UE Stochastic Differential Equations1,50
................ UE Stochastic Processes1,50
................ UE Stochastic Simulation1,50
................ VL Stochastic Simulation3,00
................ UE Reliability Theory1,50
................ VL Reliability Theory3,00
........ d. Mathematical methods in the natural sciences0,00-13,50
................ VL Theoretical physics for mathematicians6,00
................ VL Special Topics mathematical methods in the natural sciences (1,5 ECTS)1,50
................ UE Special Topics mathematical methods in the natural sciences1,50
................ VL Special Topics mathematical methods in the natural sciences3,00
................ UE Theoretical physics for mathematicians1,50
........ e. Mathematical methods in engineering0,00-13,50
................ VL Inverse problems3,00
................ UE Mathematical Methods in Continuum Mechanics1,50
................ VL Mathematical methods in continuum mechanics6,00
................ UE Inverse problems1,50
................ UE Mathematical methods in electrical engineering1,50
................ VL Mathematical Methods in Electrodynamics3,00
................ VL Special Topics Mathematical Methods in Engineering (1.5 ECTS)1,50
................ UE Special Topics Mathematical Methods in Engineering1,50
................ VL Special Topics Mathematical Methods in Engineering3,00
........ f. Mathematical methods in the economic sciences0,00-13,50
................ VL Financial Mathematics4,50
................ UE Financial Mathematics1,50
................ VL Special Topics Mathematical Methods in the Economic Sciences (1.5 ECTS)1,50
................ UE Special Topics Mathematical Methods in the Economic Sciences1,50
................ VL Special Topics Mathematical Methods in the Economic Sciences3,00
................ VL Mathematics in the actuarial sciences3,00
........ g. Optimization0,00-13,50
................ VL Special Topics Optimization (1.5 ECTS)1,50
................ UE Special Topics Optimization1,50
................ VL Special Topics Optimization3,00
................ UE Calculus of Variation1,50
................ VL Calculus of Variation3,00
........ h. Symbolic computation0,00-13,50
................ VL Algebraic combinatorics3,00
................ VL Computer Analysis3,00
................ UE Algebraic combinatorics1,50
................ UE Computer Analysis1,50
................ UE Commutative algebra and algebraic geometry1,50
................ VL Commutative algebra and algebraic geometry3,00
................ KV Programming project symbolic computation3,00
................ UE Special Functions and Symbolic Summation1,50
................ VL Special Functions and Symbolic Summation3,00
................ VL Special Topics symbolic computation (1,5 ECTS)1,50
................ UE Special Topics symbolic computation1,50
................ VL Special Topics symbolic computation3,00
........ i. Logic and software design0,00-13,50
................ VL Automated Reasoning3,00
................ VL Mathematical logic 13,00
................ KV Practical Software Technology4,50
................ KV Formal Methods in Software Development4,50
................ UE Automated Reasoning1,50
................ VL Computability theory3,00
................ VL Design and Analysis of Algorithms3,00
................ VL Introduction to parallel and distributed computing3,00
................ VL Formal Semantics of Programming Languages3,00
................ UE Mathematical logic 11,50
................ KV Practical in Logic and Software Design3,00
................ VL Rewriting in Computer Science and Logic3,00
................ VL Special topics logic and software design (1,5 ECTS)1,50
................ UE Special topics logic and software design1,50
................ VL Special topics logic and software design3,00
................ VL Thinking, Speaking, Writing3,00
........ j. Algebra and discrete mathematics0,00-13,50
................ VL Computer Algebra II3,00
................ UE Algebra1,50
................ VL Algebra6,00
................ UE Computer Algebra II1,50
................ UE Discrete and experimental mathematics1,50
................ VL Discrete and experimental mathematics3,00
................ VL Groebner Bases3,00
................ KO Linear algebra and analytic geometry 10,00
................ KO Linear algebra and analytic geometry 20,00
................ VL Special Topics algebra and discrete mathematics (1,5 ECTS)1,50
................ UE Special Topics algebra and discrete mathematics1,50
................ VL Special Topics algebra and discrete mathematics3,00
........ k. Functional analysis0,00-13,50
................ VL Spectral theory and distributions6,00
................ UE Distributions and locally convex spaces1,50
................ VL Distributions and locally convex spaces3,00
................ UE Ergodic theory1,50
................ VL Ergodic theory3,00
................ UE Operator theory1,50
................ VL Operator theory3,00
................ UE Sobolev spaces1,50
................ VL Sobolev spaces3,00
................ UE Spectral theory and distributions3,00
................ VL Special Topics Functional analysis (1,5 ECTS)1,50
................ UE Special Topics Functional analysis1,50
................ VL Special Topics Functional analysis3,00
........ l. Geometry0,00-13,50
................ VL Differential Geometry3,00
................ UE Computational Geometry1,50
................ VL Computational Geometry3,00
................ UE Computer-aided geometric design1,50
................ VL Computer-aided geometric design3,00
................ UE Differential Geometry1,50
................ UE Introduction to topology1,50
................ VL Introduction to topology3,00
................ UE Advanced differential geometry1,50
................ VL Advanced differential geometry3,00
................ UE Advanced topolopy1,50
................ VL Advanced topolopy3,00
................ VL Special Topics Geometry (1.5 ECTS)1,50
................ UE Special Topics Geometry1,50
................ VL Special Topics Geometry3,00
................ UE Splines1,50
................ VL Splines3,00
........ m. Knowledge-based Mathematical Systems0,00-13,50
................ VL Manyvalued Logic3,00
................ UE Manyvalued Logic1,50
................ UE Fuzzy Systems1,50
................ VL Fuzzy Systems3,00
................ VL Special topics Knowledge-based Mathematical Systems (1,5 ECTS)1,50
................ UE Special topics Knowledge-based Mathematical Systems1,50
................ VL Special topics Knowledge-based Mathematical Systems3,00
........ n. Number theory0,00-13,50
................ VL Applied Number Theory3,00
................ UE Applied Number Theory1,50
................ VL Finite combinatorics3,00
................ UE Cryptography1,50
................ VL Cryptography3,00
................ VL Special Topics Number theory (1,5 ECTS)1,50
................ UE Special Topics Number theory1,50
................ VL Special Topics Number theory3,00
................ UE Number-theoretic Methods in Numerical Analysis1,50
................ VL Number-theoretic Methods in Numerical Analysis3,00
................ UE Introduction in number theory1,50
................ VL Introduction in number theory 13,00
................ UE Number theory1,50
................ VL Number theory3,00
........ o. Ethic in mathematics and its applications0,00-3,00
................ KV Ethic in mathematics and its applications3,00
Bachelor Thesis9,00
........ SE Bachelor Seminar with Bachelor Thesis9,00
Free electives9,00