Inhalt
              
                
                  
                  	Master's programme Mathematics for Natural Sciences (K 066/402)                  	
                   | 
                 
                
                   | 
                  
                                                           | 
                 
                
                    | 
                 
                                
                    | 
                  
					
									                    
									                      | Overview | 
									                      ECTS Credits | 
									                     |  Mandatory subjects | 33,00 |  | ........ Mathematical methods in physics | 27,00 |  | ................ VL Differential geometry | 3,00 |  | ................ VL Dynamical systems and chaos | 3,00 |  | ................ VL Complex variables | 6,00 |  | ................ VL Pseudodifferential operators and Fourier integral operators | 3,00 |  | ................ VL Spectral theory and distributions | 6,00 |  | ................ VL Theoretical physics for mathematicians | 6,00 |  | ........ Stochastic methods | 6,00 |  | ................ VL Statistical methods | 3,00 |  | ................ VL Stochastic differential equations | 3,00 |  |  Electives | 33,00 |  | ........ a. Analysis | 0,00-33,00 |  | ................ VL Integral equations and boundary value problems | 6,00 |  | ................ SE Seminar for graduate and doctoral students | 3,00 |  | ................ UE Dynamical systems and chaos | 1,50 |  | ................ UE Fractals | 1,50 |  | ................ VL Fractals | 3,00 |  | ................ UE Complex variables | 3,00 |  | ................ UE Integral equations and boundary value problems | 3,00 |  | ................ UE Classical harmonic analysis | 1,50 |  | ................ VL Classical harmonic analysis | 3,00 |  | ................ UE Pseudodifferential operators and Fourier integral operators | 1,50 |  | ................ SE Seminar Analysis | 3,00 |  | ................ UE Singular integrals and potential theory | 1,50 |  | ................ VL Singular integrals and potential theory | 3,00 |  | ................ VL Special course Analysis (1,5 ECTS) | 1,50 |  | ................ UE Special course analysis | 1,50 |  | ................ VL Special course analysis | 3,00 |  | ........ b. Numerical analysis | 0,00-12,00 |  | ................ VL Numerical methods in continuum mechanics 1 | 3,00 |  | ................ UE Numerical methods in continuum mechanics 1 | 1,50 |  | ................ UE Numerical methods in continuum mechanics 2 | 1,50 |  | ................ VL Numerical methods in continuum mechanics 2 | 3,00 |  | ................ SE Seminar numerical analysis | 3,00 |  | ........ c. Probability theory and mathematical statistics | 0,00-19,50 |  | ................ VL Stochastic processes | 3,00 |  | ................ UE Markov chains | 1,50 |  | ................ VL Markov chains | 3,00 |  | ................ SE Seminar probability theory and mathematical statistics | 3,00 |  | ................ UE Statistical methods | 1,50 |  | ................ UE Stochastic differential equations | 1,50 |  | ................ UE Stochastic processes | 1,50 |  | ................ UE Stochastic simulation | 1,50 |  | ................ VL Stochastic simulation | 3,00 |  | ........ d. Mathematical methods in the natural sciences | 0,00-13,50 |  | ................ SE Seminar for graduate and doctoral students | 3,00 |  | ................ VL Theoretical physics for mathematicians | 6,00 |  | ................ SE Seminar mathematical methods in the natural sciences | 3,00 |  | ................ VL Special Topics mathematical methods in the natural sciences  (1,5 ECTS) | 1,50 |  | ................ UE Special Topics mathematical methods in the natural sciences | 1,50 |  | ................ VL Special Topics mathematical methods in the natural sciences | 3,00 |  | ................ UE Theoretical physics for mathematicians | 1,50 |  | ........ e. Mathematical methods in engineering | 0,00-21,00 |  | ................ VL Inverse problems | 3,00 |  | ................ VL Mathematical methods in continuum mechanics | 6,00 |  | ................ UE Inverse problems | 1,50 |  | ................ UE Mathematical methods in electrical engineering | 1,50 |  | ................ VL Mathematical methods in electrical engineering | 3,00 |  | ................ UE Mathematical methods in continuum mechanics | 3,00 |  | ................ SE Seminar mathematical methods in engineering | 3,00 |  | ........ f. Mathematical methods in the economic sciences | 0,00-3,00 |  | ................ SE Seminar mathematical methods in the economic sciences | 3,00 |  | ........ g. Optimization | 0,00-7,50 |  | ................ SE Seminar optimization | 3,00 |  | ................ UE Calculus of variation | 1,50 |  | ................ VL Calculus of variation | 3,00 |  | ........ h. Symbolic computation | 0,00-3,00 |  | ................ SE Seminar symbolic computation | 3,00 |  | ........ i. Logic and software design | 0,00-3,00 |  | ................ SE Seminar logic and software design | 3,00 |  | ........ j. Algebra and discrete mathematics | 0,00-10,50 |  | ................ UE Algebra | 1,50 |  | ................ VL Algebra | 6,00 |  | ................ SE Seminar algebra and discrete mathematics | 3,00 |  | ........ k. Functional analysis | 0,00-33,00 |  | ................ SE Seminar for graduate and doctoral students | 3,00 |  | ................ UE Distributions and locally convex spaces | 1,50 |  | ................ VL Distributions and locally convex spaces | 3,00 |  | ................ UE Ergodic theory | 1,50 |  | ................ VL Ergodic theory | 3,00 |  | ................ UE Operator theory | 1,50 |  | ................ VL Operator theory | 3,00 |  | ................ SE Seminar Functional analysis | 3,00 |  | ................ UE Sobolev spaces | 1,50 |  | ................ VL Sobolev spaces | 3,00 |  | ................ UE Spectral theory and distributions | 3,00 |  | ................ VL Special Topics Functional analysis (1,5 ECTS) | 1,50 |  | ................ UE Special Topics Functional analysis | 1,50 |  | ................ VL Special Topics Functional analysis | 3,00 |  | ........ l. Geometry | 0,00-33,00 |  | ................ SE Seminar for graduate and doctoral students | 3,00 |  | ................ UE Computational Geometry | 1,50 |  | ................ VL Computational Geometry | 3,00 |  | ................ UE Computer-aided geometric design | 1,50 |  | ................ VL Computer-aided geometric design | 3,00 |  | ................ UE Differential geometry | 1,50 |  | ................ UE Introduction to topology | 1,50 |  | ................ VL Introduction to topology | 3,00 |  | ................ UE Advanced differential geometry | 1,50 |  | ................ VL Advanced differential geometry | 3,00 |  | ................ UE Advanced topolopy | 1,50 |  | ................ VL Advanced topolopy | 3,00 |  | ................ SE Seminar Geometry | 3,00 |  | ................ UE Splines | 1,50 |  | ................ VL Splines | 3,00 |  | ........ m. Knowledge-based Mathematical Systems | 0,00-3,00 |  | ................ SE Seminar Knowledge-based Mathematical Systems | 3,00 |  | ........ n. Number theory | 0,00-7,50 |  | ................ SE Seminar Number theory | 3,00 |  | ................ UE Number-theoretic methods in numerical analysis | 1,50 |  | ................ VL Number-theoretic methods in numerical analysis | 3,00 |  | ........ o. Gender Studies | 0,00-6,00 |  | ................ VL Ethics and Gender Studies | 3,00 |  | ................ KV Gender Studies Managing Equality TN | 3,00 |  |  Free electives | 7,50 |         								 | 
                 
               
              | 
                     |