Inhalt

[ 489WSIVOASU14 ] UE Optimale und Adaptive Signalverarbeitungssysteme

Versionsauswahl
Es ist eine neuere Version 2017W dieser LV im Curriculum Masterstudium Elektronik und Informationstechnik 2020W vorhanden.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M2 - Master 2. Jahr Informationselektronik Mario Huemer 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Informationselektronik 2015W
Ziele Entwurf optimaler Schätzer für Signalverarbeitungsprobleme, Entwurf optimaler und adaptiver Filter, Entwurf von Kalman Filtern.
Lehrinhalte Optimale und adaptive Signalverarbeitungssysteme werden in einer Vielzahl elektronischer Systeme eingesetzt. Typische Anwendungsgebiete sind Kommunikationstechnik, Radartechnik, Ortungssysteme, Sprachverarbeitung, Bildverarbeitung, Biosignalverarbeitung, Regelungstechnik, und viele mehr. In dieser Vorlesung werden die wichtigsten Konzepte der optimalen und adaptiven Signalverarbeitung vorgestellt und die erarbeitete Theorie wird anhand einer Vielzahl von praktischen Beispielen angewandt. In der parallel zur Vorlesung stattfindenden Übung werden die Konzepte mit Hilfe der MATLAB Software programmiert und entsprechend getestet.

  • Optimale Schätzalgorithmen in der Signalverarbeitung (MVU, BLUE, LS, MMSE, LMMSE, MAP; Anwendungen: Amplitudenschätzung, Frequenzschätzung, Leistungsschätzung, Signalextraktion, Systemidentifikation)
  • Optimale Filter (Wiener Filter; Least Squares Filter; Anwendungen: Systemidentifikation (Kanalschätzung), Inverse Systemidentifikation (z.B. zur Entzerrung von Mobilfunkkanälen), Rauschunterdrückung, Lineare Prädiktion (beispielsweise für Sprachsignale))
  • Adaptive Filter (LMS Algorithmus; RLS Algorithmus)
  • Kalman Filter (Kalman Filter für lineare Systeme; Extended Kalman Filter für nichtlineare Systeme; Anwendungen: Vehicle Tracking, Ladezustandsschätzung für Batterien)
Beurteilungskriterien Abgabe von kurzen zu lösenden Beispielen während des Semesters, Abgabegespräch
Lehrmethoden Vortrag von Beispielen durch LVA-Leiter, Hausübungen
Abhaltungssprache Deutsch
Literatur
  • Vorlesungsfolien
  • S. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Prentice Hall, Rhode Island 1993.
  • D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and Adaptive Signal Processing, Artech House, 2005.
Lehrinhalte wechselnd? Nein
Sonstige Informationen Abhaltungssprache auf Anfrage in Englisch
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Zuteilung nach Reihenfolge