Inhalt

[ 445VPRETNEK23 ] KV Thermofluid Dynamics of Sustainable Energy Systems

Versionsauswahl
Workload Education level Study areas Responsible person Hours per week Coordinating university
3 ECTS M1 - Master's programme 1. year (*)Maschinenbau Michael Krieger 2 hpw Johannes Kepler University Linz
Detailed information
Original study plan Master's programme Mechanical Engineering 2025W
Learning Outcomes
Competences
Students are able to perform thermo-fluiddynamic calculations for different sustainable energy systems (e.g. water turbines, wind turbines, heat pumps).
Skills Knowledge
Specifically, they can

  • explain the basic design and functional principles of water and wind turbines (K2)
  • perform basic calculations regarding water and wind turbines (K4,5,6)
  • descripe thermo-fluid dynamic aspects of further methods of sustainable energy gerneration (K4,5,6)
  • perform calculations of typical therodynamic cycles of sustainable energy gerneration systems (K3,4,5)
Different sustainable energy systems are considered with a focus on thermo-fluid dynamic aspects

  • water turbines
  • wind turbines
  • wave and tidal power plants and further examples
  • thermodynamic cycles of sustainable energy systems, e.g. heat pumps, Stirling engines, Rankine process
Criteria for evaluation Written assignment, written and/or oral exam
Methods Lecture by means of a script, development of practical examples
Language German
Study material
  • E. Hau: Windkraftanalgen. Sechste Auflage, Springer, 2016
  • J. Giesecke, St. Heimerl, E. Mosonyi: Wasserkraftanlagen, Springer, 6. Auflage, 2014
  • Gasch R., Twele J.: Windkraftanlagen, Springer, 4. Auflage, 2005
  • W. Grassi: Heat Pumps. Springer, 2018
  • J. Dohmann: Thermodynamik der Kälteanlagen und Wärmepumpen, Springer, 2016
  • E. Macchi, M. Astolfi: Organic Rankine Cycle (ORC) Power Systems, Elsevier, 2017
Changing subject? No
On-site course
Maximum number of participants 35
Assignment procedure Assignment according to priority