Inhalt

[ 993MLPEDBTU25 ] UE (*)Deep Learning: Basic Techniques

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M1 - Master 1. Jahr Artificial Intelligence Günter Klambauer 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Artificial Intelligence 2025W
Lernergebnisse
Kompetenzen
(*)See the corresponding lecture.
Fertigkeiten Kenntnisse
(*)Implementing and Understanding Neural Network Basics (k4) Students can construct neural networks, understand core concepts like single-layer neural networks, loss functions, empirical and structural risk minimization, multi-layer perceptrons (MLP), backpropagation, and identify issues such as vanishing gradients.

Applying Advanced Deep Learning Techniques (k4) Students are able to enhance neural network performance using regularization and normalization techniques, and through various activation functions and initialization strategies.

Addressing Optimization and Regularization Challenges (k5) Students can apply optimization algorithms like SGD, Momentum, Adagrad, and Adam, and use regularization techniques such as weight decay, dropout, early stopping, and pruning to improve model generalization.

Building and Using Convolutional Neural Networks (CNNs) (k4) Students are capable of designing and training CNNs for tasks such as image classification and they understanding their application potential.

Understanding and Implementing Transfer and Multitask Learning (k5) Students can train basic MLP and CNN architectures and apply transfer learning and multitask learning strategies to adapt models for related tasks and improve learning efficiency.

(*)Students gain practical knowledge of constructing, training, and optimizing neural networks, including MLPs and CNNs, using PyTorch. They understand how to implement regularization and optimization techniques, manage hyperparameters, and apply advanced methods like transfer and multitask learning to real-world deep learning tasks.
Beurteilungskriterien (*)bi-weekly assignments, exam at the end of the semester
Lehrmethoden (*)Slide presentations, presentations on blackboard, discussions, and code examples
Abhaltungssprache Englisch
Lehrinhalte wechselnd? Nein
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
993MLPEDN1U19: UE Deep Learning and Neural Nets I (2019W-2025S)
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Direktzuteilung