Inhalt

[ 479POPEMMMK12 ] KV (*)Mechanical Material Models for Polymers

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Kunststofftechnik Zoltan Major 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Polymer Engineering and Science 2025W
Lernergebnisse
Kompetenzen
(*)Students are able to understand, apply and critically evaluate the mechanical material models for polymer materials in the context of continuum mechanics. They can differentiate between various models for elastic, viscoelastic, elastoplastic and failure-based behavior of polymers and transfer them to real applications.
Fertigkeiten Kenntnisse
(*)In particular, they are able to

Explain the basic principles of continuum mechanics and state their significance for modeling polymeric materials [k2].

Systematically classify material models and identify their prerequisites, areas of application and limitations [k4].

Differentiate between elastic material models with increasing degrees of anisotropy and demonstrate their application [k3].

Explain hyperelastic material models for polymers and apply them to selected examples [k2, k3].

analyze viscoelastic material models for isotropic and anisotropic polymers and evaluate their influence on the mechanical behavior [k4, k5].

Understand elastoplastic material models with a focus on polymer-compatible approaches and critically reflect on their use in practice [k3, k6].

(*)Fundamentals of continuum mechanics: Stress and distortion states, material law definitions

Classification of material models: Elastic, viscoelastic, elastoplastic, fracture mechanics

Elastic material models: Isotropy, orthotropic and anisotropic models

Hyperelastic material models: Mooney-Rivlin, Ogden, Yeoh and others

Viscoelastic material models: Linear and non-linear approaches for isotropic and anisotropic materials

Elastoplastic material models: Phenomenological and micromechanical models with polymer-focused extensions

Failure models: Intra- and interlaminar failure criteria, application to polymeric laminates

Fundamentals of fracture mechanics: Crack initiation, crack propagation and fracture mechanics parameters

Micromechanics-based material modeling

Beurteilungskriterien (*)Written exam to test the understanding of material models and their application
Lehrmethoden (*)Lectures with supporting presentations and discussion rounds

Practical examples to illustrate the material models

Case studies on the application of the models to real materials

Use of software tools to simulate mechanical properties

Abhaltungssprache Deutsch, English if requested.
Literatur (*)• R. M. Christensen, The Theory of Material Failure, Oxford University Press, 2013

  • D. Francois, A. Pineau and A. Zauli, Mechanical Behavior of Materials, Volume 1: Micro- and Macroscopic Constitutive Behavior, Springer, 2012; Volume 2: Fracture Mechanics and Damage, Springer, 2013
  • S. Yipp (ed.) Handbook of Material Modeling, Springer, 2005
  • A. Holzapfel, Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley, 2000.
  • N.S. Ottosen and M. Ristinmaa, The Mechanics of Constitutive Modeling, Elsevier, 2005.
  • T.L. Anderson, Fracture Mechanics, Fundamentals and Applications, CRC Press, Boca Raton, 2000.
Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)To acquire the basic knowledges about the thermo-mechanical material models for polymeric materials.
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Zuteilung nach Vorrangzahl