| Detailed information | 
                    
                                
                    
                      | Original study plan | 
                      Bachelor's programme Technical Mathematics 2023W | 
                    
                      
                    
                      | Objectives | 
                      Conveying of important concepts and methods in funtional analysis
 | 
                    
                      
                    
                      | Subject | 
                      Kapitel 1. Metric and normed spaces
- Metric spaces
 - Normed spaces
 - Examples
 - Compactness
 - Cardinality of Sets
 - The Stone-Weierstraß theorem
 - Banach‘s fixed point theorem
 - Lp  spaces
 - Equivalent norms
 - Compactness in normed spaces
  
 
 Kapitel 2. Linear and continuous operators
 - Basics
 - Examples
  
 
 Kapitel 3. Main Theorems about Operators
 - Baire‘s theorem
 - Uniform boundedness principle
 - Open mapping theorem
 - Continuous inverse theorem
 - Closed Graph theorem
  
 
 Kapitel 4. Hilbert spaces
 - Pre-Hilbert spaces
 - Hilbert spaces and normed spaces
 - Best approximation
 - Projection theorem
 - Fréchet-Riesz representation theorem
 - Orthonormal systems and bases in Hilbert spaces
 - Fischer-Riesz theorem
 - The spectral theorem for compact self-adjoint operators
  
 
 Kapitel 5. Dual spaces
 - Examples
 - The Hahn-Banach theorem and its consequences
  
 
 Kapitel 6. Spectrum of compact operators – Fredholm theory
 - Adjoint operators
 - The spectrum of bounded operators
 - Fredholm theory
 
  | 
                    
                                                            
                    
                      | Criteria for evaluation | 
                      Written exam at the end of the semester
 | 
                    
                       
                    
                                 
                    
                      | Methods | 
                      Blackboard talk combined with lecture notes
 | 
                    
                                     
                    
                      | Language | 
                      German | 
                    
                      
                    
                      | Study material | 
                      Every book about elementary functional analysis, e.g. D. Werner – Funktionalanalysis (German) or J.B. Conway - A Course in Functional Analysis (English).
 
I can also recommend G. Folland - Real analysis - modern techniques and their applications 
  | 
                    
                      
                    
                      | Changing subject? | 
                      No | 
                    
                                        
                      | Corresponding lecture | 
                      (*)ist gemeinsam mit 201STSTMITV18: VL Maß- und Integrationstheorie (3 ECTS) äquivalent zu TM1PCVOFANA: VO Funktionalanalysis und Integrationstheorie (6 ECTS) + [ Lehrveranstaltung aus dem Wahlfach  a. Analysis (1,5 ECTS) oder Lehrveranstaltung aus dem Wahlfach  k. Funktionalanalysis (1,5 ECTS) ]
 |