| 
        
          
          
         
          |  Inhalt
              
                
                  | [ 404CANCSSIV23 ]                                         VL                                         (*)Symbolic Summation and Integration |  
                  |  |  |  | Es ist eine neuere Version 2025W dieser LV im Curriculum Masterstudium Artificial Intelligence 2025W vorhanden. |  
                  |  |  
                  | (*)  Leider ist diese Information in Deutsch nicht verfügbar. |  
                  |  | 
                    
                      | Workload | Ausbildungslevel | Studienfachbereich | VerantwortlicheR | Semesterstunden | Anbietende Uni |  
                      | 4,5 ECTS | M - Master | Mathematik | Carsten Schneider | 3 SSt | Johannes Kepler Universität Linz |  |  
                  |  |  
                  |  | 
                        
    					  
    					  
  						
                    
                      | Detailinformationen |  
                      | Quellcurriculum | Masterstudium Computational Mathematics 2023W |  
                      | Ziele | (*)Crucial algorithms for symbolic summation and integration are elaborated and general toolboxes are presented to tackle non-trivial sums and integrals that arise in technical and natural sciences. |  
                      | Lehrinhalte | (*)Symbolic summation in the setting of difference rings, symbolic integration in the setting of differential fields, solving linear recurrences and differential equations in finite terms |  
                      | Beurteilungskriterien | (*)Oral or written examination at the end of the semester |  
                      | Lehrmethoden | (*)Classical black board lecture supplemented with calculations in computer algebra systems |  
                      | Abhaltungssprache | Englisch |  
                      | Literatur | (*) M. Bronstein: Symbolic Integration.
K. Geddes, S. Czapor, and G. Labahn: Algorithms for Computer Algebra.
S.A. Abramov, M. Bronstein, M. Petkovsek, C. Schneider: On Rational and Hypergeometric Solutions of Linear Ordinary Difference Equations in ΠΣ-field extensions. J. Symb. Comput. 107, pp. 23-66. arXiv:2005.04944 [cs.SC].
 C. Schneider Term: Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. In: Anti-Differentiation and the Calculation of Feynman Amplitudes, pp. 423-485. 2021. Springer, arXiv:2102.01471 [cs.SC]
C. Schneider: A Difference Ring Theory for Symbolic Summation. J. Symb. Comput. 72, pp. 82-127. 2016. arXiv:1408.2776 [cs.SC]
C. Schneider: Summation Theory II: Characterizations of RΠΣ-extensions and algorithmic aspects. J. Symb. Comput. 80(3), pp. 616-664. 2017. arXiv:1603.04285 [cs.SC]
 |  
                      | Lehrinhalte wechselnd? | Nein |  |  
                  |  |  
                  |  | 
                    
    				  
    				  
  					
                    
                      | Präsenzlehrveranstaltung |  
                        | Teilungsziffer | - |  
                      | Zuteilungsverfahren | Direktzuteilung |  |  |  |