Inhalt

[ 926BUSISAI20 ] Modul Semantic Artificial Intelligence

Versionsauswahl
Es ist eine neuere Version 2022W dieses Fachs/Moduls im Curriculum Masterstudium Wirtschaftsinformatik 2024W vorhanden.
Workload Form der Prüfung Ausbildungslevel Studienfachbereich VerantwortlicheR Anbietende Uni
6 ECTS Kumulative Modulprüfung M1 - Master 1. Jahr Wirtschaftsinformatik Michael Schrefl Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Wirtschaftsinformatik 2020W
Ziele Die Studierenden kennen Methoden und Verfahren der symbolischen Künstlichen Intelligenz um die Semantik von Daten und Prozessen explizit zu repräsentieren. Sie sind in der Lage, semantische Technologien alleine oder in Kombination mit probabilistischen und statistischen Verfahren des Maschinellen Lernens zur Integration und zum Austausch von Daten, zur Komposition und Steuerung von Geschäftsprozessen und für die Entwicklung und den Einsatz Intelligenter Agenten anzuwenden.
Lehrinhalte Methoden und Verfahren der symbolischen Künstlichen Intelligenz, Ontologien und ausgewählte Ontologiesprachen, Knowledge Graphs, Non-probabilistisches and probabilistisches Schließen, Intelligente Agenten, Symbolische vs nicht-symbolische Künstliche Intelligenz, Kombination von Knowledge Graphs und Maschinellem Lernen.
Sonstige Informationen Vorlesung und Übung können auch als Kombinierte Lehrveranstaltung angeboten werden.
Untergeordnete Studienfächer, Module und Lehrveranstaltungen