Study guide of JKU Linz
Seitenbereiche:
Sprachauswahl:
Sprache:
DE
[
EN
]
.
Studienhandbuch-Login
User ID
Password
.
Menü
Overview
All curricula
External tools
KUSSS
Auwea NG
Positionsanzeige
Technical Mathematics
»
Electives
»
h. Symbolic computation
Inhalt
[
201SYMRCAGU20
]
UE
Commutative algebra and algebraic geometry
Versionsauswahl
Version
2023W
2022W
2020W
2012W
Es ist eine neuere Version
2024W
dieser LV im Curriculum Master's programme Computational Mathematics 2024W vorhanden.
(*)
Unfortunately this information is not available in english.
Workload
Education level
Study areas
Responsible person
Hours per week
Coordinating university
1,5 ECTS
B3 - Bachelor's programme 3. year
Mathematics
Franz Winkler
1 hpw
Johannes Kepler University Linz
Detailed information
Original study plan
Bachelor's programme Technical Mathematics 2020W
Objectives
Understanding of algebraic curves and surfaces, and the corresponding polynomial ideals
Subject
polynomial ideals (resultants, Groebner bases, Hilbert‘s Basis Theorem)
algebraic sets
Hilbert‘s Nullstellensatz
projective geometry
functions on varieties
algebraic curves (singularities)
rational parametrization of curves
Criteria for evaluation
Exercises and projects
Language
English
Study material
book Cox,Little,O‘Shea
lecture notes in the web
Changing subject?
No
Corresponding lecture
(*)
TM1WHUEKOMM: UE Kommutative Algebra und Algebraische Geometrie (1,5 ECTS)
Earlier variants
They also cover the requirements of the curriculum (from - to)
TM1WHUEKOMM: UE Commutative algebra and algebraic geometry (2003S-2020S)
On-site course
Maximum number of participants
25
Assignment procedure
Direct assignment