Inhalt

[ 921PECOCACV20 ] VL (*)Computer Algebra for Concrete Mathematics

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Mathematik Carsten Schneider 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2021W
Ziele (*)In this lecture basic skills and techniques will be elaborated which are relevant to simplify formulas related to enumeration. Special emphasis is put on tools that support the student for the analysis of algorithms (best case, worst case and average case). In particular, the participant gets acquainted to apply these computer algebra tools to non-trivial examples.
Lehrinhalte (*)The content of the lecture can be summarized by the following key words:

  • algorithmic treatment of formal power series;
  • c-finite and holonomic functions/sequences;
  • recurrence solving;
  • basic aspects of asymptotics;
  • symbolic summation.

A major emphasis of the lecture is to present the basic notions, to develop the basic ideas of the underlying algorithms and to put computer algebra into action for concrete examples.

Beurteilungskriterien (*)Oral exam.
Lehrmethoden (*)Blackboard presentation combined with Mathematica sessions where the introduced computer algebra tools are applied to non-trivial problems combing from combinatorics and the analysis of algorithms.
Abhaltungssprache Englisch
Literatur (*)Detailed lecture notes will be provided. In addition, many of the topics discussed in the lecture can be found in the book "Concrete Mathematics - A Foundation for Computer Science" by R.L.Graham, D.E.Knuth und O.Patashnik (Addison-Wesley, 1994) and "The Concrete Tetrahedron" by Manuel Kauers and Peter Paule (Springer Wien, 2011).
Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)Until term 2020S known as: 201SYMRCACV12 VL Computer Algebra for Concrete Mathematics
Äquivalenzen (*)TM1WHVOANKO: VO Analytische Kombinatorik (3 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung