Studienhandbuch der JKU Linz
Seitenbereiche:
Sprachauswahl:
Sprache:
[
DE
]
.
EN
Studienhandbuch-Login
Benutzername
Passwort
.
Menü
Übersicht
Alle Curricula
Externe Tools
KUSSS
Auwea NG
Positionsanzeige
Artificial Intelligence
»
(*)
Area of Specialization
Inhalt
[
993SCDS19
] Studienfach
(*)
Computer and Data Science
Versionsauswahl
Version
2019W
(*)
Leider ist diese Information in Deutsch nicht verfügbar.
Workload
Form der Prüfung
Ausbildungslevel
Studienfachbereich
VerantwortlicheR
Anbietende Uni
Gliederung
M1 - Master 1. Jahr
Informatik
Sepp Hochreiter
Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum
Masterstudium Artificial Intelligence 2019W
Ziele
(*)
Specialization topics in computer and data science.
Lehrinhalte
(*)
The contents of this subject result from the contents of its courses.
Untergeordnete Studienfächer, Module und Lehrveranstaltungen
KV
(*)
Basic Methods of Data Analysis
UE
(*)
Computational Logics for AI
VL
(*)
Computational Logics for AI
UE
(*)
Machine Learning: Supervised Techniques
VL
(*)
Machine Learning: Supervised Techniques
UE
(*)
Machine Learning: Unsupervised Techniques
VL
(*)
Machine Learning: Unsupervised Techniques
KV
(*)
Natural Language Processing
UE
(*)
Programming in Python II
VL
(*)
Programming in Python II
UE
(*)
Reinforcement Learning
VL
(*)
Reinforcement Learning
UE
(*)
Statistics for AI
VL
(*)
Statistics for AI
UE
(*)
Visual Analytics
UE
(*)
Symbolic AI
VL
(*)
Symbolic AI
UE Softwareentwicklung 2
VL Softwareentwicklung 2
KV Big Data Management and Processing
KV Computational Data Analytics
KV Conceptual Data Modeling
KV Debugging
KV Emerging Computer Technologies
KV Hardware Design
VL Information Displays
KV Information Visualization
KV Knowledge Based Systems
KV Learning from User-generated Data
UE Machine Learning and Pattern Classification
VL Machine Learning and Pattern Classification
KV Mobile Computing
KV Model Checking
KV Multimedia Search and Retrieval
UE Principles of Cooperation
VL Principles of Cooperation
UE Principles of Interaction
VL Principles of Interaction
KV SAT Solving
KV Semantic Data Modeling and Applications
VL Visual Analytics
KV
(*)
Statistical Principles of Data Science
KV
(*)
Computational Statistics