Inhalt

[ 402GEOM12 ] Studienfach l. Geometrie

Versionsauswahl
Es ist eine neuere Version 2021W dieses Fachs/Moduls im Curriculum Masterstudium Mathematik in den Naturwissenschaften (auslaufend mit 28.2.2026) 2022W vorhanden.
Workload Form der Prüfung Ausbildungslevel Studienfachbereich VerantwortlicheR Anbietende Uni
0-33 ECTS Gliederung M2 - Master 2. Jahr Mathematik Aicke Hinrichs Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Mathematik in den Naturwissenschaften 2018W
Ziele Vermittlung von vertieften Kenntnissen über verschiedene Teilbereiche der Geometrie und deren Anwendungen, insbesondere in der mathematischen Bildverarbeitung und im Computer Aided Geometric Design
Lehrinhalte Differentialgeometrie: Kurven und Flächen in der Ebene und im Raum, Theorie der Flächenmetrik und der Flächenkrümmung, Abbildungen von Flächen, Gaußsche Krümmung und Theorema Egregium, globale Eigenschaften ebener Kurven.

Höhere Differentialgeometrie: Spezielle Flächen (Regelflächen, abwickelbare Flächen, Böschungsflächen), Satz von Gauß-Bonnet, Hüllflächen, Differenzierbare Mannigfaltigkeiten und Riemannsche Geometrie.

Computer Aided Geometric Design: Mathematische Verfahren für die Beschreibung von Freiformkurven und -flächen im Geometric Design, insbesondere Bezier, B-Spline und NURBS-Darstellungen sowie zugehörige Algorithmen.

Splines: B-Splines, Algorithmen für Splinefunktionen, Approximationseigenschaften, multivariate Splines.

Einführung in die Topologie: Mengentheorie, metrische Räume, elementare topologische Begriffe, Konstruktion von topologischen Räumen, reguläre, vollständig reguläre und normale Räume, kompakte und lokal kompakte Räume.

Höhere Topologie: Cech vollständige und Bairesche Räume; Funktionalanalysis: Uniform Boundedness Principle, Open Mapping Theorem, Vitali-Hahn-Saks Theorem, Closed Graph Theorem und Closed Range Theorem; topologische Gruppen und homogene Räume; perfekte Abbildungen und parakompakte Räume.

Seminar Geometrie: Spezielle Themen und aktuelle wissenschaftliche Arbeiten aus dem Fach Geometrie.

Master- und Dissertantenseminar: Begleitendes Seminar für Studierende des Masterstudiums Mathematik in den Naturwissenschaften, die eine Masterarbeit anfertigen.

Untergeordnete Studienfächer, Module und Lehrveranstaltungen