Inhalt

[ 875BIMLMSTU16 ] UE (*)Machine Learning: Supervised Techniques

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M1 - Master 1. Jahr Bioinformatik Ulrich Bodenhofer 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Bioinformatics 2016W
Ziele (*) This practical course complements the lecture "Machine Learning: Supervised Techniques" and aims at practicing the concepts and methods acquired in the lecture.
Lehrinhalte (*)
  • Basics of classification and regression
  • Evaluation of machine learning results (confusion matrices, ROC)
  • Under- and overfitting / bias and variance
  • Cross-validation and hyperparameter selection
  • Logistic regression
  • Support vector machines and kernels
  • Neural networks and deep networks
  • Time series (sequence) analysis
  • Bagging and boosting
  • Feature selection and feature construction
Beurteilungskriterien (*)Marking is based on homework
Lehrmethoden (*)Students are given assignments in 1-2 week intervals. Homework must be handed in. Results are to be presented and discussed in the course.
Abhaltungssprache Englisch
Literatur (*)Assignments and homework submissions are managed via JKU Moodle. Where necessary, complimentary course material is provided for download.
Lehrinhalte wechselnd? Nein
Äquivalenzen (*)675MLDAMSTU13: UE Machine Learning: Supervised Techniques (1,5 ECTS)
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
675MLDAMSTU13: UE Machine Learning: Supervised Techniques (2013W-2016S)
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Direktzuteilung