Inhalt

[ 951SMDSSPDK20 ] KV (*)Statistical Principles of Data Science

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
6 ECTS M1 - Master 1. Jahr Statistik Andreas Futschik 3 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Statistics and Data Science 2025W
Lernergebnisse
Kompetenzen
(*)Students are able to carry out tasks commonly occurring in data science, such as data cleaning, exploratory data analysis and methods of inference and prediction. They are able to properly apply basic statistical methods on real-world data.
Fertigkeiten Kenntnisse
(*)
  • Knowing and understanding basic principles, terminology and methods of statistics (k1,k2)
  • Applying statistical methods and critically evaluating their results (k3,k4, k5)
  • Knowing about common pitfalls (k3)
  • Solving typical tasks in Data Science, including non-standard problems and data types (k2,k3)
  • Using of statistical software
(*)
  • Exploratory data Analysis and Data Cleaning with R
  • Methods of inference such as regression in different variants
  • Classical versus Bayesian statistics
  • Selected modern developments such as statistical learning, causal inference, text/image analysis, or dealing with large amounts of data
Beurteilungskriterien (*)Homework plus written exam.
Abhaltungssprache Englisch
Literatur (*)Bradley Efron and Trevor Hastie: Computer Age Statistical Inference. Cambridge University Press 2016.
Lehrinhalte wechselnd? Ja
Äquivalenzen (*)951SMDSSPDK17: KV Statistical Principles of Data Science (6 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer 25
Zuteilungsverfahren Zuteilung nach Vorrangzahl