 |
Detailinformationen |
Anmeldevoraussetzungen |
(*)keine
|
Quellcurriculum |
Masterstudium Statistics and Data Science 2025W |
Lernergebnisse |
Kompetenzen |
(*)Students are able to design their own experiment efficiently and judge other experiments accordingly.
|
|
Fertigkeiten |
Kenntnisse |
(*)- Knowing and understanding of the basic problems, concepts and procedures of experimental design (k1,k2)
- Constructing, applying and critically evaluating different sampling designs (k3,k4, k5)
- Using software to generate experimental designs R (k3)
|
(*)- randomization, blocking, replication
- simple factorial designs, fractional factorials
- screening designs
- response surface designs
- optimal design of experiments
- design algorithms
|
|
Beurteilungskriterien |
(*)Presentation and written description of a concrete designed experiment, homework exercises, final exam
|
Lehrmethoden |
(*)Lecture and interactive work with experimental design software
|
Abhaltungssprache |
Englisch |
Literatur |
(*)Atkinson A. C., Donev A. N. and Tobias R. D. (2007). Optimum Experimental Designs, with SAS. Oxford University Press.
Anderson M. J. and Whitcomb P. J. (2007). DOE Simplified: Practical Tools for Effective Experimentation, Second Edition, 2nd Edition. Productivity Press.
|
Lehrinhalte wechselnd? |
Nein |
Gilt als absolviert, wenn |
(*)5MSVPKV: KV Versuchsplanung (6 ECTS)
|
|