Inhalt

[ 921PECOMLPV20 ] VL (*)Machine Learning and Pattern Classification

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Informatik Gerhard Widmer 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2025W
Lernergebnisse
Kompetenzen
(*)Students understand the basic concepts and methods in the field of supervised machine learning (mainly: classification). They understand what is involved when applying these methods to complex classification and recognition problems, and can design and critically evaluate machine learning solutions to real-world problems.
Fertigkeiten Kenntnisse
(*)Students

  • know and understand the most important classes of machine learning models and algorithms for classification problems (k2);
  • know how to select, configure, and run appropriate machine learning algorithms for a given problem (k3);
  • know how to set up systematic learning experiments (k3);
  • an how to evaluate and interpret the results (k5).
(*)
  • Fundamental concepts of supervised learning;
  • Important classes of classification models and learning algorithms: Bayes classification and Bayes error; density estimation; nearest-neighbour classification; standard classifiers in machine learning (decision trees, Naive Bayes, feedforward neural networks, support vector machines, ensemble methods);
  • empirical evaluation of classifiers;
  • clustering and mixture models;
  • Markov processes and Hidden Markov Models.
Beurteilungskriterien (*)Written exam at the end of the semester.
Lehrmethoden (*)Standard lecture series, with class materials (lecture slides) regularly provided in electronic form.
Abhaltungssprache Englisch
Literatur (*)Lecture slides will regularly provided in electronic form. No further materials required.
Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)This course (VO) and the corresponding exercise course (UE) form a didactic unit. The study results described here are achieved through the combination of these two courses.
Äquivalenzen (*)in collaboration with 921PECOMLPU20: UE Machine Learning and Pattern Classification (1.5 ECTS) equivalent to
921PECOMLPK13: KV Machine Learning and Pattern Classification (4.5 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung