Inhalt

[ 921PECOCACV20 ] VL (*)Computer Algebra for Concrete Mathematics

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Informatik Carsten Schneider 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2025W
Lernergebnisse
Kompetenzen
(*)Students are familiar with basic skills and techniques that are relevant to simplify formulas related, e.g., to the analysis of algorithms (worst case and average case) or data structures such as binary trees. They know the relevant computer algebra algorithms and can apply them to non-trivial examples.
Fertigkeiten Kenntnisse
(*)
  • Introduction into the theory of formal power series [K2,K5];
  • Manipulation of formal power series with classical and algorithmic tools to concrete problems [K3,K4,K6];
  • Understanding of the basic properties of C-finite sequences and the most relevant algorithms (rational representation, closure properties, recurrence solving) [K2,K3,K6];
  • Applying closure properties to holonomic functions/sequences and understanding of the underlying algorithmic toolbox [K3,K4];
  • Understanding and applying of basic aspects in asymptotics [K2, K3];
  • Algorithmic treatment of simplifying sums (symbolic summation and recurrence solving) [K2,K3];
(*)
  • Algorithmic and mathematical thinking;
  • Classical and algorithmic manipulation of mathematical objects such as formal power series and Laurent series;
  • Basic principles of computer algebra methods for concrete problem solving.
Beurteilungskriterien (*)Oral exam.
Lehrmethoden (*)Blackboard presentation combined with Mathematica sessions where the introduced computer algebra tools are applied to non-trivial problems combing from combinatorics and the analysis of algorithms.
Abhaltungssprache Englisch
Literatur (*)Detailed lecture notes will be provided. In addition, many of the topics discussed in the lecture can be found in the book "Concrete Mathematics - A Foundation for Computer Science" by R.L.Graham, D.E.Knuth und O.Patashnik (Addison-Wesley, 1994) and "The Concrete Tetrahedron" by Manuel Kauers and Peter Paule (Springer Wien, 2011).
Lehrinhalte wechselnd? Nein
Äquivalenzen (*)TM1WHVOANKO: VO Analytische Kombinatorik (3 ECTS)
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
201SYMRCACV12: VL Computer Algebra for Concrete Mathematics (2012W-2020S)
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung