Inhalt

[ 921INSYMSRK13 ] KV (*)Multimedia Search and Retrieval

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
4,5 ECTS M1 - Master 1. Jahr Informatik Markus Schedl 3 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2025W
Lernergebnisse
Kompetenzen
(*)Students understand and can apply basic methods of multimedia signal processing and analysis. They are able to design, implement, and evaluate multimedia search and retrieval systems.
Fertigkeiten Kenntnisse
(*)
  • Knowing, understanding, and applying various methods to extract features from texts [k3]
  • Knowing, understanding, and applying various methods to extract features from audio/music [k3]
  • Knowing, understanding, and applying various methods to extract features from images and videos [k3]
  • Knowing, understanding, and applying various methods to fuse single-modal representations using early and late fusion approaches, to build multimodal ML-based systems [k3]
  • Understanding various metrics to quantify accuracy aspects of a retrieval system, and analyze them for different retrieval algorithms [k4]
  • Given a predefined search/retrieval task on multimedia data, elaborate an approach to solve it, using precomputed descriptors and datasets; build a prototype system implementing the devised approach; evaluate the approach/system [k6]
(*)
  • Different media types and their "semantic gap"
  • Text retrieval: data sources, key concepts, inverted index, Boolean retrieval model, vector space model, relevance feedback, latent semantic analysis, PageRank
  • Audio/music retrieval: basics of audio signal processing, time- and frequency-domain features, content similarity, acoustic scales, bag-of-audio-words, hash tokens/fingerprinting, applications of music information retrieval, context-based similarity
  • Image retrieval: low-level features (color, texture, shape), salient points/SIFT, bag-of-visual-words, semantic descriptors
  • Video: compression, content-based video descriptors (e.g., color, texture, shape, motion), segmentation and summarization, deep learning-based image/video processing
  • Multimedia data fusion: early fusion and late fusion
  • Evaluation metrics for information retrieval systems, including precision, recall, F1 score, NDCG, MAP, beyond-accuracy aspects
Beurteilungskriterien (*)Written exam (exceptional oral exams possible), practical exercise(s), reports, presentations
Lehrmethoden (*)Lectures, practical exercise(s)
Abhaltungssprache Englisch
Literatur (*)Slides, scientific papers
Lehrinhalte wechselnd? Nein
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung