Inhalt

[ 921DASICDAK17 ] KV (*)Computational Data Analytics

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Informatik Johannes Fürnkranz 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2025W
Lernergebnisse
Kompetenzen
(*)Students are able to master foundational concepts and techniques of machine learning and data mining.
Fertigkeiten Kenntnisse
(*)Students are familiar with the general data mining process (k3), so that they can identify suitable algorithms for a wide variety of data mining problems (k4), and can competently apply them to these problems (k5). These skills are based on a thorough theoretical understanding of the state-of-the-art in data mining (k5), which enables them to implement such methods on their own (k5). In particular, they are also familiar with the challenges of big data (k4). (*)
  • Data mining process models
  • Pre-processing techniques
  • Inductive rule learning
  • Efficient similarity-based techniques
  • Clustering for big data
  • Association rule mining
  • Foundations of Stream Mining
  • Evaluation
Beurteilungskriterien (*)Written Exam at the end of the semester
Lehrmethoden (*)Slide Presentations with Practical Exercises
Abhaltungssprache Englisch
Literatur (*)I. H. Witten, E. Frank, M. A. Hall, C. J. Pal: Data Mining. Morgan Kaufmann.

J. Leskovec, A. Rajaraman, J. D. Ullman: Mining of Massive Datasets. Cambridge University Press.

Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)The lecture is accompanied with a voluntary practical course (351.044), in which interested students can collect experience with practical data mining tools such as Weka, KNIME, or RapidMiner.
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung