Inhalt

[ 921DASIBDMK17 ] KV (*)Big Data Management and Processing

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Informatik Birgit Pröll 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2025W
Lernergebnisse
Kompetenzen
(*)Students are able to apply techniques, employ tools, analyze systems and develop assets in the realm of big data management and processing.
Fertigkeiten Kenntnisse
(*)Students

  • know about advanced concepts and techniques for management and processing of big data by bridging theory and practice. (K2)
  • have in-depth knowledge about the current state of the art in this highly active and diverse field of research and have gained a deep understanding of the often well-established and longstanding theories underlying the huge variety of upcoming big data systems and tools. (K2)
  • are able to apply techniques and employ tools for Big Data-specific tasks. (K3)
  • know why big data systems and tools were designed that way and how to select appropriate systems and tools for a certain problem at hand. (K4, K5)
  • are capable of developing big data management and processing assets. (K6)
(*)
  • Foundations of NoSQL Data Management: Reliable, Scalable and Maintainable Data-Intensive Applications; NoSQL Data Models and Query Languages; NoSQL Data Modeling
  • Distributed Data in NoSQL Systems: Replication, Partitioning, Transactions, Consistency and Consensus
  • Derived Data in NoSQL Systems: Batch Processing, Stream Processing, Lambda vs. Kappa Architectures, Situation Assessment Techniques, Situation & Process Mining
  • Queries in Computational Data Analytics: Query Languages & Execution (Index Structures, Similarity Queries)
  • Natural Language Processing and Social Media Mining on the Web: Web Search, Web Extraction and Mining, Question Answering and Dialogue Systems
Beurteilungskriterien (*)Exercises and written exam at the end of the semester.
Lehrmethoden (*)Slide presentation with case studies and hands-on sessions.
Abhaltungssprache Englisch
Literatur (*)
  • Martin Kleppmann “Designing Data-Intensive Applications – The Big Ideas Behind Reliable, Scalable, and Maintainable Systems”, O'Reilly, March 2017
  • Lena Wiese, “Advanced Data Management for SQL, NoSQL, Cloud and Distributed Databases”, De Gruyter/Oldenburg, 2015
  • Kay Uwe Sattler, Gunter Saake and Erhard Rahm, “Verteiltes und Paralleles Datenmanagement – Von verteilten Datenbanken zu Big Data und Cloud”, Springer, 2015
  • Nathan Marz and James Warren. “Big Data: Principles and Best Practices of Scalable Realtime Data Systems”, Manning Publications Co., Greenwich, CT, USA, 2015
  • Wil van der Aalst, “Process Mining – Data Science in Action”, Springer, 2016.
  • Ricardo Baeza-Yates, Berthier Ribeiro-Neto. “Modern Information Retrieval”, Addison-Wesley 2011
  • Bruce Croft, David Metzler, Trevor Strohma. “Search Engines”, Pearson 2009
Lehrinhalte wechselnd? Nein
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung