Inhalt

[ 536AIBAIAIV19 ] VL (*)Introduction to AI

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS B1 - Bachelor 1. Jahr Artificial Intelligence Johannes Fürnkranz 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Bachelorstudium Artificial Intelligence 2025W
Lernergebnisse
Kompetenzen
(*)Students understand and are able to explain the fundamental theoretical principles, models, and techniques of Artificial Intelligence, including its historical development and core subfields.
Fertigkeiten Kenntnisse
(*)
  • Understanding the historical development of AI (k2)

Students are able to describe the theoretical foundations and historical evolution of AI, including key milestones, scientific breakthroughs, and shifts in paradigms.

  • Analyzing Theoretical Foundations of Reasoning and Knowledge Representation (k4)

Students can explain formal models of knowledge representation and logical reasoning.

  • Exploring theoretical aspects of Machine Learning (k3)

Students are able to differentiate between fundamental machine learning approaches (supervised, unsupervised, and reinforcement learning) and understand their mathematical underpinnings and theoretical limitations.

(*)Students have theoretical knowledge of AI’s core subfields, including reasoning and knowledge representation, machine learning, natural language processing, and reinforcement learning, with an emphasis on formal models and foundational principles. They understand AI’s historical background and its theoretical challenges.
Beurteilungskriterien (*)Three written online exams.
Abhaltungssprache Englisch
Literatur (*)To be found on moodle.
Lehrinhalte wechselnd? Nein
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung