Inhalt

[ 536AIBAHO1U20 ] UE (*)Hands-on AI I

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS B1 - Bachelor 1. Jahr Artificial Intelligence Rainer Dangl 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Bachelorstudium Artificial Intelligence 2025W
Lernergebnisse
Kompetenzen
(*)Students are able to handle, preprocess, and visualize different types of datasets, and apply foundational deep learning techniques for practical problem-solving. Students are capable of developing, training, and optimizing artificial neural networks using deep learning frameworks like PyTorch, including understanding and applying techniques like gradient descent, batch normalization, and dropout.
Fertigkeiten Kenntnisse
(*)
  • Handling and understanding of different kinds of data sets
  • Visualization, dimensionality reduction and clustering of data
  • Moving from Linear Regression to Logistic Regression and Artificial Neural Networks
  • Understanding gradient descent
  • Using Deep Learning frameworks like PyTorch
  • Playing around with the first Artificial Neural Networks
  • Introducing Convolutional Neural Networks
  • Tips and tricks for making networks learn (batch normalization, dropout, transfer learning, etc.)
(*)Students possess foundational knowledge of deep learning concepts, including neural networks, gradient descent, data visualization, and handling of various types of datasets. They understand the use of AI frameworks like PyTorch and are familiar with optimization techniques and deep learning architectures like Convolutional Neural Networks.
Beurteilungskriterien (*)Online Assignments
Abhaltungssprache Englisch
Lehrinhalte wechselnd? Nein
Äquivalenzen (*)in collaboration with 536AIBAHO1V20: VL Hands-on AI I (1.5 ECTS) equivalent to
536AIBAHO1K19: KV Hands-on AI I (3 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Direktzuteilung