 |
Detailinformationen |
Quellcurriculum |
Bachelorstudium Technische Mathematik 2025W |
Lernergebnisse |
Kompetenzen |
(*)The students are familiar with basic skills and techniques that are relevant to simplify formulas related, e.g., to enumeration problems and the analysis of algorithms. In particular, the participant gets acquainted to computer algebra algorithms and to apply them to non-trivial examples.
|
|
Fertigkeiten |
Kenntnisse |
(*)- Manipulating formal power series with classical and algorithmic tools [K2,K5];
- Algorithmic treatment of hypergeometric sequences and the understanding of the basic algorithms [K2,K4,K5] (summation, recurrence solving);
- Understanding of the basic properties of C-finite sequences [K2] and the most relevant algorithms (rational representation, closure properties, recurrence solving) [K3,K4,K5];
- Applying closure properties to holonomic functions/sequences and understanding of the underlying algorithmic toolbox [K2,K3,K5];
- Understanding of basic aspects in asymptotics [K2,K3];
|
(*)Formal power series and Laurent series with operations such as inversion, composition and formal limits, poynomial summation, Gosper's algorithm, Petkovsek's algorithm, asymptotics.
|
|
Beurteilungskriterien |
Mündliche oder schriftliche Prüfung am Ende des Semesters.
|
Lehrmethoden |
Tafel- oder Zoom-Vortrag (abhängig von der pandemischen Situation);
Verwendung von Computeralgebra Tools.
|
Abhaltungssprache |
Deutsch - but could be English, provided there is general agreement. |
Literatur |
"The Concrete Tetrahedron" by M. Kauers and P. Paule, also other books.
|
Lehrinhalte wechselnd? |
Nein |
Äquivalenzen |
ist gemeinsam mit 201UCMAAKOU18: UE Algorithmische Kombinatorik (1,5 ECTS) äquivalent zu TM1PEKVINFO: KV Informationssysteme (3 ECTS) + [ Lehrveranstaltung aus dem Wahlfach h. Symbolisches Rechnen (1,5 ECTS) oder Lehrveranstaltung aus dem Wahlfach i. Logik (1,5 ECTS) oder Lehrveranstaltung aus dem Wahlfach j. Algebra und Diskrete Mathematik (1,5 ECTS) ]
|
|