Inhalt

[ 404CANCSSIV23 ] VL (*)Symbolic Summation and Integration

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
4,5 ECTS M - Master Mathematik Carsten Schneider 3 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computational Mathematics 2025W
Lernergebnisse
Kompetenzen
(*)The students get acquainted with advanced algorithms for symbolic summation and integration and learn how the existing toolboxes work to tackle non-trivial sums and integrals that arise in technical and natural sciences.
Fertigkeiten Kenntnisse
(*)
  • Working with difference rings and fields in the setting of symbolic summation [K2,K3];
  • Working with differential fields in the setting of symbolic integration [K2,K3];
  • Modeling of special functions and sequences in difference and differential rings/fields [K2,K3,K4];
  • Understanding of recursive algorithms in nested ring/field extensions (parameterized telescoping for summation and integration) [K4,K5];
  • Applications of the tools to expressions in terms of special functions in technical and natural sciences [K3,K5]
(*)Difference rings and fields, differential fields, summation and integration theory, Risch's algorithm, Karr's algorithm and its generalizations, special functions.
Beurteilungskriterien (*)Oral or written examination at the end of the semester
Lehrmethoden (*)Classical black board lecture supplemented with calculations in computer algebra systems
Abhaltungssprache Englisch
Literatur (*)
  1. M. Bronstein: Symbolic Integration.
  2. K. Geddes, S. Czapor, and G. Labahn: Algorithms for Computer Algebra.
  3. S.A. Abramov, M. Bronstein, M. Petkovsek, C. Schneider: On Rational and Hypergeometric Solutions of Linear Ordinary Difference Equations in ΠΣ-field extensions. J. Symb. Comput. 107, pp. 23-66. arXiv:2005.04944 [cs.SC].
  4. C. Schneider Term: Algebras, Canonical Representations and Difference Ring Theory for Symbolic Summation. In: Anti-Differentiation and the Calculation of Feynman Amplitudes, pp. 423-485. 2021. Springer, arXiv:2102.01471 [cs.SC]
  5. C. Schneider: A Difference Ring Theory for Symbolic Summation. J. Symb. Comput. 72, pp. 82-127. 2016. arXiv:1408.2776 [cs.SC]
  6. C. Schneider: Summation Theory II: Characterizations of RΠΣ-extensions and algorithmic aspects. J. Symb. Comput. 80(3), pp. 616-664. 2017. arXiv:1603.04285 [cs.SC]
Lehrinhalte wechselnd? Nein
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung