Inhalt

[ 536KNRRFOMV25 ] VL (*)Formal Models in AI

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS B3 - Bachelor 3. Jahr Artificial Intelligence Martina Seidl 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Bachelorstudium Artificial Intelligence 2025W
Lernergebnisse
Kompetenzen
(*)Students possess knowledge of formal methods to model and specify systems in computer science.
Fertigkeiten Kenntnisse
(*)Students can

  • understand system descriptions based on formal models (K2, K5)
  • concisely describe systems with formal models (K3, K4)
  • solve simple verification and planning problems with formal models (K3, K4)
  • apply SAT solvers for real-world applications (K2, K3)
  • understands strengths of weaknesses of different formalisms w.r.t. to specific use cases (K4, K5)
(*)
  • finite state machines
  • Petri nets
  • temporal logics
  • bounded model checking
  • planning
  • Markov decision processes
Beurteilungskriterien (*)Multiple small tests and exercises or exam over the full course content (both jointly with the corresponding exercise class).
Lehrmethoden (*)Slide-based presentation plus exercises.
Abhaltungssprache Englisch
Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)This lecture and the associated exercise course form an inseparable didactic unit. The learning outcomes presented here are achieved through the close interaction of the two courses.
Gilt als absolviert, wenn (*)Considered completed if: 'Formal Models' (VO INBIPVOFOMO) is completed by 30.9.2025.
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Zuteilung nach Vorrangzahl