 |
Detailed information |
Original study plan |
Bachelor's programme Mechatronics 2025W |
Learning Outcomes |
Competences |
Students are able to independently commission electrical machines, correctly determine their electrical and mechanical operating parameters and make correct statements about their operating behavior.
Students are able to independently understand the functions of hydraulic circuits and systems and map them onto models at various levels of abstraction. Furthermore, they are capable of applying basic control concepts to hydraulic systems.
The students are able to investigate mechanical systems (such as drive trains) with regard to (torsional and bending) vibrations experimentally and computationally.
|
|
Skills |
Knowledge |
Students are able to
- commission electrical machines both mechanically and electrically (k3)
- analyze electrical machines and evaluate their electrical and mechanical operating behavior (k4/5)
- determine the measurement deviations and evaluate the accuracy of the measurements (k3/4),
- document and interpret measurements (k5)
- model hydraulic circuits at various levels of abstraction (K2)
- simulate hydraulic circuits at various levels of abstraction (K3)
- operate a hydraulic test bench and record measurements after instruction (K3)
- visualize and interpret the collected measurement data in an appropriate format (K5)
- Derive differential equations of (simple) mechanical one- and multi-degree-of-freedom systems using the Ritz method (k3),
- determine natural vibration modes and natural frequencies of bending and torsional oscillators (numerically and/or analytically) (k3).
|
- Application and calibration of measuring instruments, including the identification of measurement deviations and sources of error,
- Operation and functionality of the electrical machine types, DC machine, synchronous machine and induction machine,
- Control of speed and torque of the DC machine
- Speed control methods for synchronous and induction machines
- Preparation of protocols according to scientific standards.
- Basic formulas of hydraulics
- Simulation of hydraulic circuits using Matlab/Simulink and Hydrolib3
- Trajectory control of a hydraulic cylinder
- Vibration behavior of mechanical systems,
- Modeling of (oscillatory) mechanical systems,
- Transformation of energy to neighboring vibration modes and influence on the decay behavior (damping).
|
|
Criteria for evaluation |
Written and/or oral introductory examinations on the practical dates, collaboration, written documentation in the form of laboratory protocols
|
Methods |
Independent and non-independent practical work on experimental set-ups, independent preparation tasks
|
Language |
German |
Study material |
- H. Murrenhoff, Grundlagen der Fluidtechnik: Teil 1: Hydraulik, 8. korrigierte Auflage 2016 (Reihe Fluidtechnik)
- G. Bauer und M. Niebergal, Ölhydraulik Grundlagen, Bauelemente, Anwendungen. Auflage 2020.
- D. Findereisen,, Ölhydraulik, Handbuch für die hydrostatische Leistungsübertragung in der Fluidtechnik, 5. Auflage.
- H.J. Matthies und K.T. Renius, Einführung in die Ölhydraulik, Für Studium und Praxis, 8. Auflage.
- D. Schröder, Elektrische_Antriebe - Grundlagen. 2007.
- D. Schröder, Elektrische Antriebe. 2: Regelung von Antriebssystemen, 3., Bearb. Aufl. Berlin: Springer, 2009.
- J. Specovius, Grundkurs Leistungselektronik: Bauelemente, Schaltungen und Systeme ; mit 34 Tabellen, 3., Aktualisierte und erw. Aufl. in Aus dem Programm Elektronik. Wiesbaden: Vieweg + Teubner, 2009.
- H. Dresig, F. Holzweißig: Maschinendynamik, 10. Auflage, Springer-Verlag Berlin Heidelberg, 2011.
- K. Magnus, K. Popp. W- Sektro: Schwingungen, 8. Auflage, Vieweg + Teubner, 2008.
|
Changing subject? |
No |
Further information |
The lab courses take place in small groups on blocked dates (~4h/unit).
|
|