Inhalt

[ 921INSYIREK13 ] KV (*)Information Retrieval and Extraction

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Informatik Birgit Pröll 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computer Science 2025W
Lernergebnisse
Kompetenzen
(*)Students are able to analyze, evaluate and employ techniques, tools and frameworks in information retrieval and information extraction.
Fertigkeiten Kenntnisse
(*)Students

  • understand fundamentals of traditional information retrieval, including document representation, term weighting, retrieval models and system evaluation. (K2)
  • understand fundamentals of rule-based information extraction, including NER, POS-tagging etc. (K2)
  • understand approaches and techniques of dialogue systems (K2)
  • have knowledge about related fields and current research
  • can process and retrieve documents by applying by applying diverse techniques to natural language text and using current tools thereon. (K3)
  • can extract information from a text corpus using advanced frameworks and libraries (K3, K6)
  • are able to analyse and evaluate information extraction and information extraction tools and frameworks (K4, K5)
(*)1) Fundamentals and concepts of traditional information retrieval (IR)

  • Document representation: indexing, weighting (tf*idf)
  • IR models: boolsch, vector space etc.
  • Architectures and (natural language) user interfaces
  • Evaluation of IR systems: recall, precision
  • Related concepts: string similarity, thesaurus, classification, relevance feedback, query expansion, context-based IR
  • IR tools and applications, eg. ElasticSearch

2) Fundamentals and concepts of information extraction (IE)

  • IE types: NER, relation extraction etc.
  • IE approaches and architectures: focusing on knowledge/rule-based approaches

• natural language processing/understanding (NLP/NLU)

  • Evaluation of IE systems
  • IE tools and applications

3)Fundamentals and concepts of dialogue systems (DS)

  • Properties of human conversation, dialogue structure and state
  • DS approaches, architectures, end evaluation
  • Search and extraction in dialogue systems
  • DS tools and applications

4) Selected topics and current research

  • Information filtering & recommender systems
  • Text recognition, optical character recognition (OCR)
  • Multilingual/crosslingual IR
  • Text summarization
  • Natural language generation (NLG) etc
Beurteilungskriterien (*)exercises, exam, in-class contribution
Lehrmethoden (*)slide presentation (slides on Moodle), exercises (group work)
Abhaltungssprache Englisch
Literatur (*)
  • Ricardo Baeza-Yates, Berthier Ribeiro-Neto: Modern Information Retrieval, Addison Wesley 2010
  • Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze: Introduction to Information Retrieval, Cambridge University Press 2008
  • W. Bruce Croft, Donald Metzler, Trevor Strohman: Search Engines – Information Retrieval in Practice, Pearson 2009
Lehrinhalte wechselnd? Nein
Äquivalenzen (*)in collaboration with 921INSYASWK13: KV Accessible Software and Web Design (1,5 ECTS) equivalent to
INMIPKVKCSY: KV Knowledge-centered Systems (4,5 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung