Inhalt

[ 201SYMRACOU20 ] UE Algebraic combinatorics

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M1 - Master 1. Jahr Mathematik Carsten Schneider 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Bachelorstudium Technische Mathematik 2025W
Lernergebnisse
Kompetenzen
(*)The students are familiar with constructive techniques to count labeled and unlabeled structures and to model objects with mathematical specifications using group actions.
Fertigkeiten Kenntnisse
(*)
  • Basic understanding to count functions with finite input and output sets (the twelve-fold way) [K2, K4];
  • Finding bijections and enumerating combinatorial objects (at random) by rank functions [K2,K4];
  • Dealing with partitions and understanding the basic theory of partitions [K2,K4];
  • Applying group actions to model objects with symmetries [K2,K3];
  • Application of the Cauchy-Frobenius Lemma (Burnside Lemma) to non-trivial counting problems [K2,K4];
  • Applying Polya theory with refined and improved versions of the Cauchy-Frobenius Lemma [K3,K4,K5].
(*)Stirling numers of fist and second kind, partition function, Omega-operator, subgroups of the symmetric group, group action, Cauchy-Frobenius Lemma, Polya's theorem, cycle index polynomial.
Beurteilungskriterien (*)Active participation.
Lehrmethoden (*)Written and oral presentation
Abhaltungssprache English
Literatur (*)See the description given in the separate entry for the lecture.
Lehrinhalte wechselnd? Nein
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
201SYMRAKOU18: UE Algebraische Kombinatorik (2018W-2020S)
Präsenzlehrveranstaltung
Teilungsziffer 25
Zuteilungsverfahren Direktzuteilung