Inhalt

[ 403COEXNMEU22 ] UE (*)Numerical Methods for Elliptic Equations

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M - Master Mathematik Herbert Egger 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Industrial Mathematics 2025W
Lernergebnisse
Kompetenzen
(*)The students can solve linear and non-linear boundary valuce problems for elliptic partial differential equations with modern numerical methods.
Fertigkeiten Kenntnisse
(*)
  • Verify existence and uniqueness of solutions to elliptic variational problems;
  • Analysis of stablility and regularity of solutions;
  • Development of appropriate numerical schemes for elliptic differential equations;
  • Prediction of convergence rates and computational costs;
  • Efficient implementation of the numerical schemes;
  • Interpretation and verification of computed solutions;
  • Numerical solution of certain nonlinear problems.
(*)Sobolev spaces, regularity of solutions, finite element methods, a-priori error analysis, Strang lemmas, adaptive methods, solution of nonlinear problems.
Beurteilungskriterien (*)Presentation of exercises at blackboard and presentation of projects.
Abhaltungssprache Englisch
Literatur (*)Lecture notes and programming tutorials
Lehrinhalte wechselnd? Nein
Äquivalenzen (*)TM1WBUENELL UE Numerik elliptischer Probleme (3 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer 20
Zuteilungsverfahren Direktzuteilung