Inhalt
[ 404STCCSDEV23 ] VL (*)Stochastic Differential Equations
|
|
|
|
(*) Leider ist diese Information in Deutsch nicht verfügbar. |
 |
Workload |
Ausbildungslevel |
Studienfachbereich |
VerantwortlicheR |
Semesterstunden |
Anbietende Uni |
4,5 ECTS |
M - Master |
Mathematik |
Evelyn Buckwar |
3 SSt |
Johannes Kepler Universität Linz |
|
|
 |
Detailinformationen |
Quellcurriculum |
Masterstudium Computational Mathematics 2025W |
Lernergebnisse |
Kompetenzen |
(*)Students are acquainted with basic principles concerning stochastic differential equations (SDEs) as well as with fundamental techniques for proving and computing in in this context as required for advanced courses.
|
|
Fertigkeiten |
Kenntnisse |
(*)- Comprehend the construction and properties of the Riemann-Stieltjes-Integral;
- Know the path properties of the Wiener process and independently prove elementary properties;
- Understand the construction of the Ito integral;
- Understand the properties if the Ito integral and prove them indepndently in simple situations;
- Know and apply Ito's lemma;
- Comprehend the construction of stochastic differential equations and understand the proof of existence and uniqueness;
- Know standard examples of solutions of stochastic differential equations, e.g., the geometrical Brownian motion and the Ornstein-Uhlenbeck process;
- Apply transformation methods for stochastic differential equations, e.g., Lamperti's transform and Girsanov's theorem;
- Know the construction of the Stratonovich integral and its relationship to the Ito integral;
- Comprehend the definition of Markov and diffusion processes and apply them to stochastic differential equations;
- Understand the relationship between stochastic differential equations and partial differential equations, in particular determine Kolmogorov's forward and backward equations or the Fokker-Planck equation, respectively, from the coefficients of a stochastic differential equation.
|
(*)Riemann-Stieltjes integral, Construction and properties of the Ito integral, Ito's Lemma, stochastic differential equations, geometric Brownsian motion and Ornstein-Uhlenbeck process, transformation methods for SDEs, Girsanov's theorem, Stratonovich integral, Markov- and Diffusion processes, Kolmogorov's forward and backward equation, Fokker-Planck equation, connection to partial differential equations
|
|
Beurteilungskriterien |
(*)Written exam
|
Lehrmethoden |
(*)Blackboard presentation
|
Abhaltungssprache |
Englisch |
Literatur |
(*)- Bernt Oksendal, Stochastic Differential Equations, Springer Verlag
- Tomas Björk, Arbitrage Theory in Continuous Time, Cambridge University Press
|
Lehrinhalte wechselnd? |
Nein |
Sonstige Informationen |
(*)Knowledge from probability theory and the theory of stochastic processes is necessary.
|
Äquivalenzen |
(*)402STMESDEV22: VL Stochastic Differential Equations (3 ECTS) + 201MASEPTMS22: SE Probability theory and mathematical statistics (1.5 ECTS)
|
Gilt als absolviert, wenn |
(*)402STMESDEV22: VO Stochastic Differential Equations (3 ECTS) + 403PTMSSDEV22: VL Stochastic Differential Equations 2 (3 ECTS)
|
|
|
 |
Präsenzlehrveranstaltung |
Teilungsziffer |
- |
Zuteilungsverfahren |
Direktzuteilung |
|
|
|