Inhalt

[ 404ANACSTDV23 ] VL (*)Spectral theory and distributions

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
4,5 ECTS M - Master Mathematik N.N 3 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Computational Mathematics 2025W
Lernergebnisse
Kompetenzen
(*)To master the spectral theory and distribution theory to the extent that their results can be applied effectively in solving physical (quantum mechanical), technical (digital signal processing), or mathematical problems.
Fertigkeiten Kenntnisse
(*)
  • Ability to perform spectral decompositions of linear operators and matrices.
  • Ability to calculate spectral projections and understand applications in functional analysis.
  • Understanding spectral properties of integral operators and differential operators.
  • Ability to apply spectral theory to concrete problems in quantum mechanics or digital signal processing.
  • Developing an understanding of the basics of distribution theory and its various applications.
  • Ability to formulate and solve differential equations using distributions.
  • Ability to apply distributions in quantum mechanics and other areas of mathematical physics.
(*)Spectrum of linear operators: eigenvalues, eigenvectors, spectral radius, resolvent. Spectral properties of compact operators. Spectral theory of bounded and compact Hermitian operators. Functional analysis: Hilbert spaces, continuous functionals, duality, projections. Applications of spectral theory to mathematical physics.

Definition and properties of distributions. Basic operations with distributions. Weak derivatives and Antiderivatives of distributions. Examples of distributions (Dirac sequences) and their applications. Convergence of distributions. Tempered distributions, Fourier transform of distributions. Applications in PDE and physics. Schwartz space: definition, properties, and applications.

Beurteilungskriterien (*)Exam
Lehrmethoden (*)Real-, complex-, and Functionalanalysis
Abhaltungssprache Englisch
Literatur (*)Naoki Saito: Laplacian Eigenfunctions: Theory, Applications and Computations http://www.math.ucdavis.edu/~saito/lapeig/ Reed-Simon, Methods of Mathematical Physics, Bd 1, (Functional Analysis)

J. Cigler, Skriptum Distributionentheorie

Lehrinhalte wechselnd? Nein
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung