Inhalt

[ 461GCTSCPIV23 ] VL (*)Computational Physics I

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
3 ECTS M1 - Master 1. Jahr Physik Robert E. Zillich 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Physics 2025W
Lernergebnisse
Kompetenzen
(*)Upon successful completion of the course, students are able to demonstrate a comprehensive understanding of basic numerical methods in physics (listed below), and can apply these methods. They are able to write computer programs to solve simple numerical problems.

This lecture is methodologically complemented by the exercise Computational Physics I.

Fertigkeiten Kenntnisse
(*)Upon completing the course, students will possess the following skills. They are able to

  • understand mathematical derivations and formulations of numerical methods (k2);
  • implement simulation methods in algorithms and computer programs (k3);
  • assess the accuracy of the numerical methods and identify possible error sources (k4/k5);
  • describe, compare and distinguish the properties of different numerical methods, identifying their unique characteristics and common underlying principles (k2-k5).
(*)During the course, students will acquire knowledge about numerical techniques concerning:

  • numerical errors, floating point numbers;
  • interpolation;
  • fast Fourier transformation;
  • numerical differentiation and finite difference discretization;
  • quadrature;
  • root finding;
  • ordinary differential equations (initial and boundary value problems);
  • solving eigenvalue problems and linear equations;
  • iterative solutions methods;
  • partial differential equations.
Beurteilungskriterien (*)Evaluation criteria will be announced at the beginning of the semester.
Lehrmethoden (*)Lecture on fundamental concepts of numerical mathematics with derivations and their implementation by algorithms/in computer codes.
Abhaltungssprache Englisch
Literatur (*)Material distributed in class:

  • lecture notes as pdf
  • Mathematica example notebooks/CDF files

Literature:

  • Paul DeVries, "A first course in computational physics", Wiley 1994
  • Josef Stör, Roland Bulirsch, "Numerische Mathematik 1" and "Numerische Mathematik 2", Springer (also available in English)
  • Gene H. Golub, Charles F. Loan, "Matrix Computations", John Hopkins University Press
  • Z. Bai, J. Demmel, J. Dongarra et al, "Templates for the Solution of Algebraic Eigenvalue Problems", SIAM 2000
  • R. Barrett, M. Berry, T.F. Chan et al, "Templates for the Solution of Linear Systems", SIAM 200g
Lehrinhalte wechselnd? Nein
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
460NATECP1V16: VO Computational Physics I (2016W-2023S)
TPMPTVOCOP1: VO Computational Physics I (2009W-2016S)
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung