Inhalt

[ 491INCHPC1V19 ] VL (*)Photochemistry 1

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M2 - Master 2. Jahr Chemie Uwe Monkowius 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Chemistry and Chemical Technology 2025W
Lernergebnisse
Kompetenzen
(*)Students will be able to analyze and predict basic photophysical properties of inorganic molecules. They know how to apply basic analytical techniques used in photophysics and photochemistry.
Fertigkeiten Kenntnisse
(*)More specifically, upon completion of the course, they will be able to - understand the nature of light (k2, k3, k4). - understand basic terms of photophysics and photochemistry (k2, k3, k4). - understand and explain basic instrumentation relevant in photophysics and photochemistry (k2, k3, k4). - apply basic concepts of photophysics and photochemistry (k3, k4, k5). - interpret simple electronic spectra and assign the nature of exited states of molecules with a special focus on coordination compounds (k4, k5, k6).

(*)Underlying concepts and details of - the nature of light and basic terms (electromagnetic spectrum; Grotthuss-Draper, Photoequivalence, Bunsen-Roscoe, Beer-Lambert law; black body, types of luminescence, photoelectric effect). - the instrumentation used in photochemistry: light sources, monochromators, lasers, filters, examples of simple photochemical set-ups. - basic terms and practical aspects of UV-vis-spectroscopy: HOMO-LUMO diagrams, solvato-, rigido- and thermochromism, isosbestic points, stopped-flow technique, solvents used for spectroscopy at ambient and cryoscopic temperatures. - symmetry and spin selection rules; spin orbit coupling and heavy atom effect. - spin selection rule and reactivity of singlet oxygen. - band shapes in electronic spectra: Franck-Condon principle and Stokes shift. - the fate of excited states: luminescence, photoreaction or non-radiative decay; quantum yields - the Jablonski diagram: internal conversion, intersystem crossing, fluorescence, phosphorescence, vibrational relaxation; Kasha’s and El-Sayed rule, energy gap law, multiphoton processes. - the interpretation of absorption and emission spectra on the basis of exemplary spectra of organic and coordination compounds including basic terms and characteristics of electronic transitions and excited states: -*, n-*-transitions; intraligand, metal centered, metal-to-ligand charge transfer, ligand-to-metal charge transfer, etc. excited states; thermally activated delayed fluorescence; excimers and exciplexes. - photophysics and photochemistry of ruthenium(II) diimine complexes. - emission life-time measurements and determination of emission quantum yields (e.g. chemical actinometry and integrating sphere).

Beurteilungskriterien (*)Exam (written).
Lehrmethoden (*)Lecture with combined blackboard and slide presentation.
Abhaltungssprache Englisch
Literatur (*)“Glossary of Terms used in Photochemistry“, 3rd Edition, Pure Appl.Chem., Vol. 79, No. 3, pp. 293-465, 2007.
V. Balzani, P. Ceroni, A. Juris, „Photochemistry and Photophysics“ 2014.
N. J. Turro, V. Ramamurthy, J. C. Scaiano “Principles of Molecular Photochemistry – An Introduction”, University Science Books 2009.
P. Suppan “Chemistry and Light”, Royal Society of Chemistry, 1994.
Lehrinhalte wechselnd? Nein
Sonstige Informationen (*)It is highly recommended to complete this course with the subsequent lecture "Photochemistry 2" in order to reach a more in-depth coverage of the topic.
Äquivalenzen (*)in collaboration with 491ESYNPC2V19: VL Photochemistry II (1.5 ECTS) equivalent to
863ADCHPHCV10: VL Photochemistry (2.6 ECTS)
Präsenzlehrveranstaltung
Teilungsziffer -
Zuteilungsverfahren Direktzuteilung