(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload
Ausbildungslevel
Studienfachbereich
VerantwortlicheR
Semesterstunden
Anbietende Uni
1,5 ECTS
M1 - Master 1. Jahr
Mathematik
Manuel Kauers
1 SSt
Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum
Bachelorstudium Technische Mathematik 2025W
Lernergebnisse
Kompetenzen
(*)Develop an understanding of techniques for constructing efficient algorithms for polynomial arithmetic and factorization.
Fertigkeiten
Kenntnisse
(*)
Analyze the complexity of algebraic algorithms;
Develop fast algebraic algorithms based on subquadratic arithmetic;
Solve arithmetic problems using lattice reduction;
Judge the practical limitations of theoretical complexity estimates;
Understand the algebraic underpinnings of polynomial factorization
(*)Subquadratic algorithms for multiplication, evaluation/interpolation, gcd. Lattice reduction. Classical algorithms for polynomial factorization over various ground fields.
Beurteilungskriterien
(*)Amount and quality of the solutions to the exercises.
Lehrmethoden
(*)Solutions proposed by the students will be discussed in class.
Abhaltungssprache
English
Lehrinhalte wechselnd?
Nein
Frühere Varianten
Decken ebenfalls die Anforderungen des Curriculums ab (von - bis) 201ADMACA2U20: UE Computer Algebra II (2020W-2023S)