 |
Detailinformationen |
Quellcurriculum |
Bachelorstudium Technische Mathematik 2025W |
Lernergebnisse |
Kompetenzen |
(*)The students understand basic algorithms in computer algebra and how they can be applied for problem solving in mathematics.
|
|
Fertigkeiten |
Kenntnisse |
(*)- Learning basic structures and algorithms in computer algebra [K2,K5];
- Analyzing the complexity of algebraic algorithms [K4,K5];
- Properties of the extended Euclidean algorithm in Euclidean domains [K2] and its application [K3] (operations in algebraic field extensions, partial fraction decomposition, Chinese Remainder Theorem, Pade approximation, rational function reconstruction, rational number reconstructions);
- Understanding of modular algorithms in the context of the Euclid algorithm [K2,K5];
- Basic understanding of Gröbner bases [K2,K4] with a special focus on algorithms (Buchberger's algorithm) and solving ideal theoretic problems in mathematics [K3].
|
(*)Extended Euclidean algorithm with applications, resultant, Mignotte bound, modular algorithms of the Euclidean algorithm, algorithmic Gröbner bases theory with applications.
|
|
Beurteilungskriterien |
(*)Depending on the needs of the participants there will be a written or oral exam.
|
Lehrmethoden |
(*)The different algorithms will be presented on the blackboard. Concrete examples will be carried out with the computer.
|
Abhaltungssprache |
Englisch |
Literatur |
(*)Joachim von zur Gathen and Jürgen Gerhard, "Modern Computer Algebra", Cambridge University Press, 2013 (or earlier versions).
|
Lehrinhalte wechselnd? |
Nein |
Äquivalenzen |
ist gemeinsam mit 201ALGECALU12: UE Computer Algebra (1,5 ECTS) äquivalent zu TM1WHKVCASY: KV Computeralgebra (4,5 ECTS)
|
Frühere Varianten |
Decken ebenfalls die Anforderungen des Curriculums ab (von - bis) 201ALGECALV12: VL Computer Algebra (2013W-2018S) 201ALGECALV12: VL Computeralgebra (2012W-2013S)
|
|