Inhalt

[ 201ANLSFANV18 ] VL Functional Analysis

Versionsauswahl
(*) Unfortunately this information is not available in english.
Workload Education level Study areas Responsible person Hours per week Coordinating university
4,5 ECTS B2 - Bachelor's programme 2. year Mathematics N.N. 3 hpw Johannes Kepler University Linz
Detailed information
Original study plan Bachelor's programme Technical Mathematics 2025W
Learning Outcomes
Competences
A deeper understanding of completeness and compactness in metric and normed spaces is acquired, along with fundamentals related to continuous operators on Banach and Hilbert spaces.
Skills Knowledge
  • Investigating compactness in metric spaces and Banach spaces (e.g., the Arzelà-Ascoli theorem)
  • Proving continuity of linear mappings (fundamental principles of functional analysis)
  • Constructing linear continuous extensions (Hahn-Banach theorem)
  • Handling orthonormal systems and projections in Hilbert spaces
  • Representing dual spaces (Riesz representation theorem, dual of Lebesgue spaces)
Completeness and compactness in metric and normed spaces, continuous operators, extensions, orthonormal systems, projections, dual spaces and the Hahn-Banach theorem.
Criteria for evaluation Written exam at the end of the semester
Methods Blackboard talk combined with lecture notes
Language German
Study material Every book about elementary functional analysis, e.g. D. Werner – Funktionalanalysis (German)
or J.B. Conway - A Course in Functional Analysis (English).

I can also recommend
G. Folland - Real analysis - modern techniques and their applications

Changing subject? No
Corresponding lecture (*)ist gemeinsam mit 201STSTMITV18: VL Maß- und Integrationstheorie (3 ECTS) äquivalent zu
TM1PCVOFANA: VO Funktionalanalysis und Integrationstheorie (6 ECTS) +
[ Lehrveranstaltung aus dem Wahlfach a. Analysis (1,5 ECTS) oder
Lehrveranstaltung aus dem Wahlfach k. Funktionalanalysis (1,5 ECTS) ]
On-site course
Maximum number of participants -
Assignment procedure Direct assignment