Inhalt

[ 926LOMACLMS14 ] SE Computational Logistics: Metaheuristiken

Versionsauswahl
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
6 ECTS M2 - Master 2. Jahr Betriebswirtschaftslehre Sophie Parragh 2 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Wirtschaftsinformatik 2019W
Ziele Die Studierenden besitzen Kenntnisse über die existierenden heuristischen und metaheuristischen Lösungskonzepte, die in Anwendungen der Logistik zum Einsatz kommen. Sie kennen die grundlegenden Design Konzepte von Heuristiken und Metaheuristiken. Sie sind in der Lage einfache Heuristiken und Metaheuristiken für Planungsprobleme selbst zu designen, zu implementieren und zu testen. Darüber hinaus besitzen sie Kenntnis über statistische Methoden zur Evaluierung von heuristischen bzw. metaheuristischen Ergebnissen.
Lehrinhalte Metaheuristische Konzepte: Variable Neighborhood Search, Adaptive Large Neighborhood Search, Tabu Search, Simulated Annealing, Genetische Algorithmen, Ant Colony Optimization.
Beurteilungskriterien Vortrag der Projektarbeit, Klausur
Lehrmethoden Hausübungsbeispiele, Projektarbeit
Abhaltungssprache Englisch
Literatur Burke, Kendall: Search Methodologies, Introductory Tutorials in Optimization and Decision Support Techniques. Springer. 2005

Gendreau, Potvin: Handbood of Metaheuristics, 2nd Edition. Springer. 2010.

Hoos, Stützle: Stochastic Local Search - Foundations and Applications. Elsevier. 2005.

Lehrinhalte wechselnd? Nein
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
2WCLOME: SE Computational Logistics: Metaheuristiken (2013W-2014S)
Präsenzlehrveranstaltung
Teilungsziffer 25
Zuteilungsverfahren Zuteilung nach Vorrangzahl