Inhalt

[ 536MLPEMUTU19 ] UE (*)Machine Learning: Unsupervised Techniques

Versionsauswahl
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS B2 - Bachelor 2. Jahr Artificial Intelligence Sepp Hochreiter 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Bachelorstudium Artificial Intelligence 2023W
Ziele (*)This practical course complements the lecture "Machine Learning: Unsupervised Techniques" and aims at practicing the concepts and methods acquired in the lecture.
Lehrinhalte (*)
  • Error models
  • Information bottleneck
  • Maximum likelihood and the expectation maximization algorithm
  • Maximum entropy methods
  • Basic clustering methods, hierarchical clustering, and affinity propagation
  • Mixture models
  • Principal component analysis, independent component analysis, and other projection methods
  • Factor analysis
  • Matrix factorization
  • Auto-associator networks and attractor networks
  • Boltzmann and Helmholtz machines
  • Hidden Markov models
  • Belief networks
  • Factor graphs
Beurteilungskriterien (*)Assignments during the semester plus final exam
Lehrmethoden (*)Students are given assignments in 1-2 week intervals. Homework must be handed in. Results are to be presented and discussed in the course.
Abhaltungssprache Englisch
Literatur (*)Assignments and homework submissions are managed via JKU Moodle. Where necessary, complimentary course material is provided for download.
Lehrinhalte wechselnd? Nein
Frühere Varianten Decken ebenfalls die Anforderungen des Curriculums ab (von - bis)
875BIMLMUTU16: UE Machine Learning: Unsupervised Techniques (2016W-2019S)
875BIN2MUTU13: UE Machine Learning: Unsupervised Techniques (2013W-2016S)
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Direktzuteilung