Es ist eine neuere Version 2024W dieser LV im Curriculum Masterstudium Computational Mathematics 2024W vorhanden.
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload
Ausbildungslevel
Studienfachbereich
VerantwortlicheR
Semesterstunden
Anbietende Uni
6 ECTS
M1 - Master 1. Jahr
Mathematik
Ronny Ramlau
4 SSt
Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum
Masterstudium Industrial Mathematics 2023W
Ziele
(*)Obtaining a basic understanding of linear integral equations of the second kind.
Lehrinhalte
(*)This course deals with analytic and numerical aspects of linear integral equations, with an emphasis on Fredholm- and Volterra equations of the second kind. For this we consider the so-called Fredholm theory, the theorems of Riesz, and the spectral decomposition of compact linear operators. Furthermore, we familiarize ourselves with different numerical solution methods for these equations. In the second part of the course we learn about the Sturm-Liouville theory for initial- and boundary-value problems of the second kind with variable coefficients. These problems can again be treated via integral equations, which in turn leads us to the theory of Green functions and operators for their solution.
Beurteilungskriterien
(*)Oral exam after appointment at the end of the course
Lehrmethoden
(*)Blackboard presentation
Abhaltungssprache
Englisch
Literatur
(*)Lecture Notes
R. Kress: Linear Integral Equations, Springer, Berlin, 1989.
Lehrinhalte wechselnd?
Nein
Frühere Varianten
Decken ebenfalls die Anforderungen des Curriculums ab (von - bis) TMBPAVOINTG: VO Integralgleichungen und Randwertprobleme (2003W-2022S)