Detailinformationen |
Quellcurriculum |
Masterstudium Computational Mathematics 2023W |
Ziele |
(*)Motivation, theory and application of stochastic differential equations.
|
Lehrinhalte |
(*)Basics of stochastic analysis, stochastic differential equations (SDE) in concrete applications, basic solution techniques for SDEs, existence- and uniqueness-theorem for SDEs.
|
Beurteilungskriterien |
(*)Written exam
|
Lehrmethoden |
(*)Blackboard presentation
|
Abhaltungssprache |
Englisch |
Literatur |
(*)- Bernt Oksendal, Stochastic Differential Equations, Springer Verlag
- Tomas Björk, Arbitrage Theory in Continuous Time, Cambridge University Press
|
Lehrinhalte wechselnd? |
Nein |
Sonstige Informationen |
(*)Knowledge from probability theory and the theory of stochastic processes is necessary.
|
Äquivalenzen |
(*)402STMESDEV22: VL Stochastic Differential Equations (3 ECTS) + 201MASEPTMS22: SE Probability theory and mathematical statistics (1.5 ECTS)
|
Gilt als absolviert, wenn |
(*)402STMESDEV22: VO Stochastic Differential Equations (3 ECTS) + 403PTMSSDEV22: VL Stochastic Differential Equations 2 (3 ECTS)
|