|  | 
                        
    					  
    					  
  						
                    
                      | Detailinformationen |  
                      | Quellcurriculum | Bachelorstudium Artificial Intelligence 2019W |  
                      | Ziele | (*)Students will become familiar with the methods presented in the corresponding lecture and can use R for solving statistical problems |  
                      | Lehrinhalte | (*) Descriptive statistics: one and two dimensional characteristics
Correlation and linear regression 
Basic concept of probability theorie including Bayes' theorem
Theory of random variables
Special distributions, test distribution
Estimating parameters: point estimation and confidence interval estimation
Statistical hypothesis testing
Introduction into R
 |  
                      | Beurteilungskriterien | (*)Homework assignments and presentations |  
                      | Lehrmethoden | (*)Student presentations |  
                      | Abhaltungssprache | Englisch |  
                      | Literatur | (*) Slides provided by instructor
Bortz, J.: Statistik für Human- und Sozialwissenschaftler. Springer, Heidelberg, in der aktuellen Auflage.
Fahrmeir, L.; Künstler, R.; Pigeot, I.: Statistik – Der Weg zur Datenanalyse. Springer, Berlin, in der aktuellen Auflage.
Hartung, J.; Elpelt, B.; Klösener, K.-H.: Statistik: Lehr- und Handbuch der angewandten Statistik. Oldenbourg, München, in der aktuellen Auflage.
or any other introductory book to statistics 
 |  
                      | Lehrinhalte wechselnd? | Nein |  
                      | Sonstige Informationen | (*)Continuative courses: Statistics 2 (focus on parametric and non-parametric tests)
Special Topics: Computer Assisted Statistics with SPSS (introduction into SPSS)
Special Topics: Biostatistics in Clinical Research (introduction into biostatisics)
Special Topics: Applied Biostatistics
Special Topics: Statistics 3 (parametric and non-parametric analysis of variance, multiple linear and non-linear regression ) 
 |  |