| Detailinformationen | 
                                
                    
                      | Quellcurriculum | Bachelorstudium Technische Mathematik 2022W | 
                      
                    
                      | Ziele | (*)Students will be able to apply the direct methods of the calculus of variations to obtain solutions to a variaty of nonlinear PDE problems of Euler Lagrange type. | 
                      
                    
                      | Lehrinhalte | (*)The calculus of variations provides existence of solutions to the class of Euler Lagrange equations which are typically nonlinear equations of divergence type. The methods  covered in this course include: Dirichlet principle, Lagrangians, coercivity, convexity, existence of minimizers, critical point methods, mountain pass theorems, Palais-Smale conditions. | 
                                                            
                    
                      | Beurteilungskriterien | (*)Oral exam | 
                       
                    
                                 
                    
                      | Lehrmethoden | (*)Blackboard presentation | 
                                     
                    
                      | Abhaltungssprache | English | 
                      
                    
                      | Literatur | (*) weakly handouts by the lecturer
L. C. Evans: PDE (Chapter 8)
 | 
                      
                    
                      | Lehrinhalte wechselnd? | Nein | 
                                        
                      | Sonstige Informationen | Bis Semester 2022S bezeichnet als: TM1WGVOVARI VL Variationsrechnung | 
    
                                        
                      | Frühere Varianten | Decken ebenfalls die Anforderungen des Curriculums ab (von - bis) TM1WGVOVARI: VO Variationsrechnung (1999W-2022S)
 
 |