| Detailinformationen |
| Quellcurriculum |
Bachelorstudium Technische Mathematik 2022W |
| Ziele |
(*)Students will be able to apply the direct methods of the calculus of variations to obtain solutions to a variaty of nonlinear PDE problems of Euler Lagrange type.
|
| Lehrinhalte |
(*)The calculus of variations provides existence of solutions to the class of Euler Lagrange equations which are typically nonlinear equations of divergence type. The methods covered in this course include: Dirichlet principle, Lagrangians, coercivity, convexity, existence of minimizers, critical point methods, mountain pass theorems, Palais-Smale conditions.
|
| Beurteilungskriterien |
(*)Oral exam
|
| Lehrmethoden |
(*)Blackboard presentation
|
| Abhaltungssprache |
English |
| Literatur |
(*)- weakly handouts by the lecturer
- L. C. Evans: PDE (Chapter 8)
|
| Lehrinhalte wechselnd? |
Nein |
| Sonstige Informationen |
Bis Semester 2022S bezeichnet als: TM1WGVOVARI VL Variationsrechnung
|
| Frühere Varianten |
Decken ebenfalls die Anforderungen des Curriculums ab (von - bis) TM1WGVOVARI: VO Variationsrechnung (1999W-2022S)
|