Inhalt

[ 993MLPEDN1U19 ] UE (*)Deep Learning and Neural Nets I

Versionsauswahl
Es ist eine neuere Version 2024W dieser LV im Curriculum Masterstudium Computational Mathematics 2024W vorhanden.
(*) Leider ist diese Information in Deutsch nicht verfügbar.
Workload Ausbildungslevel Studienfachbereich VerantwortlicheR Semesterstunden Anbietende Uni
1,5 ECTS M1 - Master 1. Jahr Artificial Intelligence Günter Klambauer 1 SSt Johannes Kepler Universität Linz
Detailinformationen
Quellcurriculum Masterstudium Artificial Intelligence 2019W
Ziele (*)This course will show practical applications and implementations of the contents of the “Deep Learning and Neural Nets I (3 VL)” class. Students will exercise the theory presented in the accompanying lecture and solve programming assignments. Programming assignments will be done in Python using the PyTorch framework.
Lehrinhalte (*)
  • Automatic differentiation
  • Common deep learning frameworks in python
  • Implementing feedforward neural networks
  • Solving problems using deep learning techniques
  • Applying convolutional neural networks
  • Transfer learning
Beurteilungskriterien (*)bi-weekly assignments, exam at the end of the semester
Lehrmethoden (*)Slide presentations, presentations on blackboard, discussions, and code examples
Abhaltungssprache Englisch
Lehrinhalte wechselnd? Nein
Präsenzlehrveranstaltung
Teilungsziffer 35
Zuteilungsverfahren Direktzuteilung